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Symmergent gravity is the R+ R2 gravity theory which emerges in a way restoring gauge symmetries
broken explicitly by the ultraviolet cutoff in effective field theories. To test symmergent gravity we
construct novel black hole solutions in four dimensions, and study their shadow in the vacuum as
well as plasma medium. Our detailed analyses show that the horizon radius, Hawking temperature,
Bekenstein–Hawking entropy, shadow angular radius, and photon deflection angle are sensitive probes
of the symmergent gravity and particle spectrum of the underlying quantum field theory.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The question of how quantum fields gravitate is a long-
tanding fundamental problem. If gravity is not quantum, which
ay indeed be the case [1,2], its incompatibility [3,4] with quan-

um fields might be an indication of its induced or emergent na-
ure [5–7]. Recently, Sakharov’s induced gravity [5] has been ex-
ended to gauge sector, and gravity has been found to emerge in
ay erasing anomalous gauge boson masses [8] and thereby nat-
ralizing the effective field theories [9,10]. The resulting setup [8,
1], the Einstein–Hilbert term plus quadratic curvature terms
lus dimensionally-regularized quantum field theory (QFT), pos-
esses novel features that can be probed via collider, astrophysical
nd cosmological phenomena. This emergent gravity, termed as
ymmergent gravity for its gauge symmetry-restoring nature [11,
2], has all its couplings induced by flat spacetime quantum
oops, and therefore, its underlying QFT can be probed or con-
trained via various phenomena. It should be emphasized that
ymmergent gravity is not an effective field theory constructed in
urved spacetime [6,13]. It is flat spacetime effective field theory
aken to curved spacetime in a way restoring gauge symmetries
roken explicitly by the UV cutoff overlying the QFT [8,11]. As a
atter of fact, quadratic curvature terms in symmergent gravity,
ifferent than those in the other approaches [6,13], have recently
een shown to lead to successful Starobinsky inflation [14].
In view of its widespread effects, in the present work we study

ormation and shadow angular radius of spherically symmetric
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black holes (BHs) in symmergent gravity. The symmergent gravity
falls in the f (R) gravity [15–17] classification, where analyses
have already been carried out of the formation and signatures
of BHs [18–22], with further work [23–26] on their shadows.
Imaging of the M87⋆ supermassive BH by the Event Horizon
Telescope (EHT) [27] has started a new era in which it will be
possible to test strong gravity regime and also probe the near
horizon geometry of BHs [27–65]. Moreover, the next mission for
the EHT, scheduled to start in near future, will release the image
of our galactic SgrA* supermassive BH.

In the present work we report on new exact BH solutions in
symmergent gravity, with detailed investigation of its shadow
angular radius and thermodynamics. We determine constraints
on the QFT underlying the symmergent gravity using the en-
tropy, temperature and shadow cast. We conclude that symmer-
gent gravity could be tested observationally in near future in,
for instance, ultra-high energy cosmic rays, black holes shad-
ows, deflection angle, and other phenomena pertaining to strong
gravity.

The layout of the paper is as follows: First, we briefly re-
view the symmergent gravity. Second, we construct spherically
symmetric BH solutions in symmergent gravity, and determine
constraints on the underlying QFT by using the BH shadow an-
gular radius, weak deflection angle, entropy and temperature.
Finally, we conclude.

2. Symmergent gravity

The standard model of elementary particles (SM), experimen-
tally completed by the discovery of Higgs boson at the LHC [66],
needs be extended for various reasons such as dark matter, grav-
ity, neutrino masses, and the like. In need of a general extension,
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Spower =

∫
d4x

√
−η

{
−cSΛ2S2 − cVΛ2tr

[
ηµνVµV ν

]
−

∑
m

cmΛ2m2
− cOΛ4

}
(1)
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t proves convenient to consider a generic renormalizable QFT
ade up of the SM particles and new particles beyond it. The SM
nd the particles beyond it do not have to interact. In general, in
ccordance with Weinberg’s effective field theory approach [9],
he QFT holds good up to some physical UV momentum cutoff Λ.
he fundamental difficulty is that this effective QFT exhibits a de-
tructive sensitivity to the UV physics [67] in scalar masses, gauge
oson masses as well as the vacuum energy. In explicit terms, the
ffective QFT is endowed a power-law correction part [10,67,68],
ee Eq. (1) in Box I, in which ηµν = diag.(1,−1,−1,−1)µν is the
lat metric, and cO, cm, cS and cV are loop factors (coefficients of
he powers of Λ).The sum

∑
m runs over all the particle masses

n the QFT, with
∑

m cmm2
∝ str[m2

] at one loop. In general, cO ∝

B − nF where nB (nF ) is the total number of bosons (fermions)
in the QFT [8,11,12]. The power-law corrections in (1) render the
QFT unphysical from various aspects. First, the scalars S acquire
Λ-sized masses, which become unnaturally large at large Λ (the
big hierarchy problem [69–71]). Second, the gauge bosons Vµ
develop Λ-sized anomalous masses, which break all gauge sym-
metries explicitly (the charge and colour breaking problem [68,
72]). Third, the vacuum gains a Λ4-sized energy density, which
would cause the cosmological constant problem [73,74] if the
spacetime were curved. It is after the solution of these destructive
problems that the effective QFT can gain physical relevance [9].
It is clear that solutions based on not-weakly-coupled new par-
ticles (like superpartners in supersymmetry) may not be realistic
because ATLAS and CMS experiments have detected so far no new
particles [75].

2.1. Gauge symmetry restoration by curvature

The effective action (1) gives the gauge boson anomalous mass
action

SV
(
η,Λ2)

= −

∫
d4x

√
−ηcVΛ2tr

[
ηµνVµV ν

]
(2)

in which tr[. . . ] stands for trace over group space.
The gauge boson mass action (2) breaks gauge symmetries

explicitly. It must be deactivated for massless gauge particles
to remain massless and massive gauge particles to receive their
masses from spontaneous symmetry breaking. The usual way of
restoring gauge symmetries is to introduce spurions [76] – non-
dynamical fields which realize the broken symmetries [76–78].
This means that one takes Λ2 in (2) to a scalar field L2(x)

2
−→ L2(x) (3)

uch that L2(x) will eventually lead to the restoration of the gauge
symmetries. To see how this said restoration takes place it proves
useful to start with the trivial identity

SV
(
η,Λ2)

= SV
(
η,Λ2)

− IV (η) + ĨV (η) (4)

based on the two gauge-invariant kinetic constructs

IV =

∫
d4x

√
−η

cV
2
tr
[
VµνVµν

]
˜V =

∫
d4x

√
−ηcV tr

[
Vµ
(
−D2ηµν + DµDν + iVµν

)
V ν
2

+ ∂µ
(
ηαβV αV βµ

)]
(5)

which are identical (IV ≡ ĨV ) under by-parts integration. Indeed,
ince ĨV aptly maintains both the surface and bulk terms IV and ĨV
re always identical, with the gauge-covariant derivative Dµ and
ield strength tensor Vµν .

Now, using (5) for ĨV and (2) for SV at the right-hand side of
4) we get the identity as in Box II, which is equal to (2)
ith Λ2 replaced by L2(x). This equality is ensured by the identity
IV (η) + ĨV (η) ≡ 0. Bu this identity is specific to flat spacetime.

t does not hold in curved spacetime. To see why, first one gets
o curved spacetime of metric gµν using the general covariance
ap [79]

µν → gµν , ∂µ → ∇µ (7)

n which ∇µ is the covariant derivative with respect to the Levi-
ivita connection

Γ λ
µν =

1
2
gλρ

(
∂µgνρ + ∂νgρµ − ∂ρgµν

)
(8)

Next, one discovers that

−IV (g) + ĨV (g) = −

∫
d4x

√
−gcV tr

[
VµRµνV ν

]
(9)

where Rµν = Rµν(gΓ ) is the Ricci tensor of the Levi-Civita
onnection. This result follows from the fact that ĨV (η), when
taken to curved spacetime via the map (7), turns to ĨV (g) and ĨV (g)
differs from IV (g) by the absence of the Rµν term (which would
arise only in curved spacetime from the [∇µ,∇ν] commutator).
Then, under the identity (9) the flat spacetime spurion-enhanced
gauge boson mass action in (6) takes the ‘‘curved" form

SV
(
g,Λ2

s

)
=

∫
d4x

√
−gcV tr

[
Vµ
(
−L2gµν − Rµν

)
V ν
]

(10)

hich is seen to vanish exactly if L2gµν equals the Ricci curvature
µν . This, however, is simply impossible. The reason is that Rµν
oes identically vanish in the flat limit (gµν → ηµν) but L2
oes not [8,11,12]. The resolution is to make L2gµν dynamically
pproach to Rµν namely as a solution of the equation of motion
or L2 (which is contributed by all the terms in the power-law
orrection action in (1)) [78]. But L2, as a spurion, is devoid of
ny kinetic term and cannot therefore approach to Rµν by its own
ynamics. The resolution is to take L2 itself a kinetic structure –
scalar involving derivatives of a field. It turns out that the field

n question can be taken to be the affine connection Γ λ
µν [78]– a

eneral connection which has nothing to do with the Levi-Civita
onnection gΓ λ

µν in (8) [80,81]. The affine Ricci curvature

µν(Γ ) = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γ

ρ

λρΓ
λ
µν − Γ λ

ρνΓ
ρ

µλ (11)

nvolves derivatives of the affine connection [80–82], and L2 itself
ecomes a kinetic structure by the identification (sign is opposite
o that in [8,11] due to opposite metric signature)
2gµν = −Rµν(Γ ) (12)

ith which the gauge boson mass action (10) takes the form

V (g,R)=
∫
d4x

√
−gcV tr

[
Vµ
(
Rµν − Rµν

)
V ν
]

(13)
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∫
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√
−ηcV tr

[
Vµ
(
−D2ηµν − L2ηµν + DµDν + iVµν

)
V ν + ∂µ
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ηαβV αV βµ
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(6)
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fter utilizing the equality (9). This metric-affine action [82,83]
ets deactivated or neutralized dynamically if the affine Ricci
ensor Rµν (Γ ) falls in close vicinity of the metrical Ricci tensor
µν(gΓ ). As will be shown in Section 2.1 below, SV (g,R) does
ndeed vanish up to doubly Planck-suppressed terms and, in
onsequence, gauge symmetries get restored [8,11,12].
Identification of L2 with affine curvature in (12) does actually

mply an equivalence relation between Λ2 and affine curvature.
hat relation comes out naturally via the spurion analysis and
auge symmetry restoration. But it has actually a symmetry rea-
on. Indeed, Λ2 and curvature have a certain affinity in that Λ2

reaks Poincare symmetry in flat spacetime [68,84] and curvature
oes it in curved spacetime. It thus is not unexpected that they
bey a certain affinity or equivalence relation [8,11,12].

.2. Emergent general relativity

Under the successive maps (3) and (12) the power-law correc-
ions in (1) lead to the following loop-induced curvature sector
see Eq. (14) in Box III), whose gauge sector is set by (13). The
isformal metric

µν =

(
1

16πGN
+

cS
4
S2 −

cO
8
gαβRαβ (Γ )

)
gµν

+ cV tr
[
VµVν

]
(15)

nvolves the scalars S, gauge bosons Vµ and the affine Ricci
curvature Rµν(Γ ) itself. Here, the Newton’s constant

G−1
N = 4π

∑
m

cmm2 1−loop
−−−→ 4π str[m2

] (16)

s a trace over mass-squared m2 of all the QFT fields. (As already
discussed in [8,11,12], masses of the known fields (heaviest being
the top quark) cannot generate GN correctly, and this gives a
strong case for the necessity of new particles beyond the known
ones.)

The affine curvature sector (14) remains stationary against
variations in Γ λ

µν provided that Γ λ
µν satisfies the equation of

motion
Γ
∇λQµν = 0 (17)

where Γ
∇λ designates the covariant derivative with respect to

Γ λ
µν . This equation of motion (17) possesses the general solution

Γ λ
µν =

1
2
(Q−1)λρ

(
∂µQνρ + ∂νQρµ − ∂ρQµν

)
(18)

=
gΓ λ

µν +
1
2
(Q−1)λρ

(
∇µQνρ + ∇νQρµ − ∇ρQµν

)
fter using the definition of the Levi-Civita connection in (8).
normity of the gravitational scale 1/GN enables the affine con-
ection in (19) to be expanded as
λ
µν =

gΓ λ
µν + 8πGN

(
∇µQ λ

ν + ∇νQ λ
µ − ∇

λQµν
)

(19)

p to O
(
G2
N

)
quadruply Planck-suppressed terms. The use of this

ffine connection in the affine Ricci tensor in (11) leads to

(Γ ) = R (gΓ ) + O G (20)
µν µν ( N)

3

in which higher-order terms involve derivatives of the scalars S
and Vµ, with no possibility of inducing any mass term for these
fields.

Replacement of the solution of the affine Ricci curvature in
(20) in the gauge boson mass action in (13) in Appendix A leads
to the suppression [8,11,12]

SV (g,R) =

∫
d4x

√
−gcV {0 + O(GN )} (21)

which restores gauge symmetries up to doubly-Planck suppressed
terms. The O(GN ) remainder here does not involve any mass
terms for scalars and gauge bosons.

Having the suppression in (21) at hand, replacement of the
affine Ricci curvature in (20) in the total curvature sector in (14)
leads to the gravitational action [8,11,12,78]

Sgrav =

∫
d4x

√
−g
{

R
16πGN

+
cS
4
S2R −

cO
16

R2
}

(22)

p to a O(GN ) remainder. Here, R = gµνRµν(gΓ ) is the Ricci
calar. This is a quadratic-curvature gravity theory in which all
he constants M2

Pl, cS , cO are loop-induced constants computed in
he flat spacetime QFT. The R2 term, with

O =
(nB − nF )
64π2 (23)

t one loop, is known to realize the Strobinsky inflation [14].
his emergent gravity theory differs from the effective action
omputed in curved spacetime [5,6] in terms of the origins and
alues of the parameters.
As summarized by (22) above, gravity has emerged in a way

estoring gauge symmetries. In other words, we have obtained
auge symmetry-restoring emergent gravity or briefly symmer-
ent gravity [8,11,12]. It is clear that the power-law corrections in
he flat spacetime effective action in (1) have left their place to
he symmergent gravity action (22). This means that the power-
aw UV sensitivities of the scalar masses, vacuum energy and of
he gauge boson masses have all been neutralized or deactivated.
ymmergence has thus led to a renormalized QFT in the curved
pacetime of (22) with gauge hierarchy problem [69–71] as well
s the charge and colour breaking problem [68,72] are resolved,
nd the gigantic quartic contributions to the cosmological con-
tant have been neutralized [73,74]. It is with this naturalization
ower that the symmergent gravity differs from all the other
mergent gravity theories in literature (including the Sakharov’s
nduced gravity [5,6]).

.3. Symmergent gravity as f (R) gravity

The symmergent gravity action in (22) can be recast as an f (R)
ravity action [15–17] with

(R) = R − πGNcOR2 (24)

here cO is defined in (23). The resulting field equation

µνF (R) −
1
2
gµν f (R) + [gµν□ − ∇µ∇ν]F (R) = 0 (25)

nvolves the d’Alembertian operator □ as well as the derivative
f f (R)

(R) =
df (R)

= 1 − 2πGNcOR (26)

dR
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Scurv(g,R) =

∫
d4x

√
−g

{
QµνRµν(Γ ) +

cO
16

(
gµνRµν(Γ )

)2
+ cV tr

[
VµVν

]
Rµν(gΓ )

}
(14)

Box III.
.

w

r
(
t
m
f

Now, trading f (R) for F (R) using the trace of the field equa-
tion (25) one is led to the traceless field equation

µνF (R) −
gµν
4

RF (R) +
gµν
4

□F (R) − ∇µ∇νF (R)=0 (27)

for F (R) in (26). The solution of this field equation varies with
the loop factor cO and encodes therefore effects of the underlying
QFT.

3. Spherically symmetric BH solutions

In this section we solve gravitational field equations (27) for
the spherically-symmetric static metric

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2(dθ2 + sin2 θdφ2) (28)

arametrized by the radial coordinate r , angular coordinates θ
nd φ, and yet-to-be determined lapse function B(r). For this
etric, we find

=
−B′′r2 − 4 rB′

− 2 B + 2
r2

(29)

or the scalar curvature, and

FB′′
+ 2B′F ′

− 2BF ′′
−

4
r
BF ′

+
4
r2

F (1 − B) = 0, (30)

2FB′′
+ 2B′F ′

+ 6BF ′′
−

4
r
BF ′

+
4
r2

F (1 − B) = 0, (31)

2FB′′
+ 2B′F ′

+ 2BF ′′
−

4
r
BF ′

+
4
r2

F (1 − B) = 0 (32)

for the equations of motion in (27). Here, subtracting any two
equations of (30), (31) and (32) from each other yields BF ′′

= 0.
Thus it leads consistently to the linear solution

F [R(r)] = a + br (33)

with a and b undetermined constants. Equality of the solution
(33) to the definition F [R(r)] in (26) results in the differential
equation

−B′′r2 − 4 rB′
− 2 B + 2

r2
+

br + a − 1
2π GNcO

= 0 (34)

fter using the expression of the scalar curvature in (29). This
quation becomes consistent with (30), (31) and (32) only if b = 0

so that

F [R(r)] = a (35)

so that the function B(r) assumes the solution

B(r) = 1 +
C
r

+
r2(a − 1)
24πGN cO

(36)

ith the additional integration constant C . This solution reduces
o the usual Schwarzschild solution as a → 1 or cO → ∞ pro-
ided that constant C = −2GNM whereM is the total mass within

the spherically symmetric mass distribution around the origin.
It gives AdS/dS BH when C = 0 (with effective cosmological
constant Λ =

1−a
8πcOGN

).
Alternatively, as seen in Table 1 it gives Schwarzschild-AdS

H when C = −2GNM (with effective cosmological constant
=

1−a for value of a > 1 and positive value of loop factor
8πcOGN

4

Table 1
AdS/dS behaviour of the spacetime according to parameters a and loop factor c0
AdS/dS Λ a c0
AdS – a > 1 cO > 0
dS + a > 1 cO < 0
dS + 0 < a < 1 cO > 0
AdS – 0 < a < 1 cO < 0

Fig. 1. Dependence of the horizon rh on the quadratic-curvature coefficient cO .
The symmergent gravity solution (SG, the red curve) nears the Schwarzschild
solution (SC, the black curve) for negative cO (when the underlying QFT has
more bosons than fermions) but deviates from it significantly for positive cO
(when the underlying QFT has more fermions than bosons). (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

c0 > 0 or for value of 0 < a < 1 and negative value of loop factor
c0 < 0), on the other hand it gives Kottler (or Schwarzschild–
deSitter) BH when C = −2GNM and for value of 0 < a < 1 and
loop factor c0 > 0 or for value of a > 1 and negative value of
loop factor c0 < 0).

In general, the radii r = rh at which largest root of B(rh) = 0
gives the event horizon:

rh =
h

(18)1/3
−

(18)1/3c1
3h

(37)

where

h = ((12c31 + 81c22 )
1/2

− 9c2)1/3 (38)

ith c1 = 1/A, c2 = C/A, A = (a − 1)/(24πGNcO). In spite of its
complicated functional form, the BH mass M can be expressed in
terms of the horizon rh. Depicted in Fig. 1 is the dependence of
h on cO. As is seen from the figure, symmergent gravity solution
SG, the red curve) approaches to the Schwarzschild solution (SC,
he black curve) for negative cO (when the underlying QFT has
ore fermions than bosons) but deviates from it significantly

or positive cO (when the underlying QFT has more bosons than
fermions).

4. Physical properties of the BH solutions

In general, BHs possess discriminating features which char-
acterize the gravitational theory underlying them [21,22]. In the
symmergent gravity setup in (22), the solution in (36) with the
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Fig. 2. The lapse function B(r) as a function of r for M = a = 0.5 (M in
ravitational units) and for Schwarzschild solution (SC, the black curve) and
or the symmergent gravity with loop factor cO = +0.2 (blue curve) and
O = −0.2 (red curve). The zeros of these curves give the event horizon of
he corresponding black hole. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

orizon (37) is able to probe the model parameter cO. In fact,
s defined in (23), cO is proportional to the number difference
etween the bosons and fermions in the underlying QFT, and
H probes actually the QFT’s departure from the fermion–boson
alance.
As shown in Fig. 2, sign of cO directly affects the lapse function

(r). If the underlying QFT has more (less) bosons than fermions
hen B(r) increases (decreases) with r . In Fig. 2, each B(r) inter-
ects the horizontal axis at the radius giving its horizon. Here,
ositive value cO = 0.2 (blue curve) generates two horizons: the
nner horizon (r = r−) and outer horizon (r = r+). Negative
alue cO = −0.2 (red curve) leads to one horizon. Black curve
epresents the Schwarzschild horizon for rh = 1. It is worth
mphasizing that the metric (28) is not asymptotically flat since
imr→∞ gtt = limr→∞ g rr .

The horizon corresponds to a removable singularity. The es-
ential singularity occurs at the point where the Kretschmann
calar

αβδγ Rαβδγ =
B′′2r4 + 4B′2r2 + 4 (B − 1)2

r4

=
48G2

NM
2

r6
+

(a − 1)2

24πG2
Nc

2
O

(39)

iverges and the said singular point, r = 0, occurs because of
he Schwarzschild part not the quadratic curvature part with the
oefficient cO.
The Hawking temperature T of a BH follows from its surface

ravity at the location of the horizon [85]

2
h = −

1
2

lim
r→rh

(
DµK̄v

) (
DµK̄ v

)
(40)

here Dµ is covariant derivative with respect to the metric (28),
nd K̄ is the timelike Killing vector with normalization constant
t (with K = γt

∂
∂t ). For a spherically symmetric BH the surface

gravity is

kh =
1
2

1
√

−gttgrr

⏐⏐gtt,r ⏐⏐r=rh
(41)

nd hence, the Hawking temperature of the symmergent gravity
H turns out to be

=
kh
2π

=
GNM
8r2h

+
(1 − a)rh
192πcOGN

(42)

hose variation with rh is plotted in Fig. 3 and variation with
oop factor c is plotted in Fig. 4. As seen from the plot, Hawking
0

5

Fig. 3. Hawking temperature T versus r = rh for the Schwarzschild (black curve),
O = 1 (blue curve) and cO = −1 (red curve) at a = 0.5 and 2GNM = 1. (For
nterpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 4. Hawking temperature T versus cO for a = 0.5 and 2GNM = 1. Black
line represents the Schwarzschild case. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

temperature increases (decreases) with r+ for cO = −1 (cO = 1).

The Bekenstein–Hawking entropy [86–89] is given by

S (rh) =
1

4GN
Ah(rh)F (rh) (43)

here Ah = 4πr2h is the horizon area, and F (rh) = a as found in
35) so that the entropy takes the form

=
aπr2h
GN

(44)

hich is independent of cO. Its variation with rh is depicted in
ig. 5, where it is seen that growth of the entropy with rh is
ontrolled by the parameter a. Entropy remains positive, which
s the physical result. The variation of entropy with loop factor c0
s plotted in Fig. 6.

. Black hole shadow in symmergent gravity

To calculate the shadow of the black hole in symmergent
ravity, we first obtain the equations of null geodesics and write
he Hamiltonian of the moving photon:

H = g ijpipj = 0, (45)

ecause of the spherically symmetry, in the equatorial plane with
= π/2, the above equation Eq. (45) is written as

1
2

[
−

p2t
B(r)

+ B(r)p2r +
p2φ
r2

]
= 0. (46)



İ. Çimdiker, D. Demir and A. Övgün Physics of the Dark Universe 34 (2021) 100900

c
a
l

r

w
d
o

V

M
o
t
t
p

b

a

3
e

a

b

p

b

i
s
o
l

s
s
s
B
t
f

Θ

i
B
f
s
c

5

p

Fig. 5. Bekenstein–Hawking entropy S versus r = rh for the Schwarzschild (black
urve) and symmergent gravity (red curve) BH solutions for loop factor cO = 1
nd 2GNM = 1. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

Fig. 6. The Bekenstein–Hawking entropy S versus cO at a = 0.5 and 2GNM = 1.

The quantities of constants motion pt and pφ which are related
to energy −pt = E and angular momentum of the photon pφ = L
can be found as ṗt = −

∂H
∂t = 0 and ṗφ = −

∂H
∂φ

= 0. Then it is
straightforward to obtain the equations of motion for the photon:

ṫ =
∂H
∂pt

= −
pt
B(r)

, (47)

φ̇ =
∂H
∂pφ

=
pφ
r2
, (48)

˙ =
∂H
∂pr

= prB(r), (49)

ith the radial momentum pr . Using the above equations, one can
efine the effective potential of photon using the radial equation
f motion as Veff + ṙ2 = 0, where the effective potential is

eff = B(r)
[
L2

r2
−

E2

B(r)

]
. (50)

axima of the effective potential corresponds to unstable circular
rbits which are found by taking the maximal value of the effec-
ive potential Veff = V ′

eff = 0 [90]. Using the condition for the
urning point rp of a photon, where ṙ = 0 or Veff = 0, the impact
arameter b is

=
L
E

=
r

√
B (r)

, (51)

nd using Veff = V ′

eff = 0, gives

B′(r)
=

2
, (52)
B(r) r t

6

where its solution gives us the radius of the photon sphere rp =

GM . On the other hand, using the Eq. (46) within the orbit
quation dr

dφ =
ṙ
φ̇

=
r2B(r)pr

j , this relation is found:

dr
dφ

= ±r

√
B(r)

[
r2E2

B(r)L2
− 1

]
. (53)

nd the above equation reduces to this form

dr
dφ

= ±r

√
B(r)

[
r2B(R)
B(r)R2 − 1

]
, (54)

y using the photon orbit at the turning point

dr
dφ

⏐⏐⏐⏐
r=R

= 0, (55)

and
E2

L2
=

B(R)
R2 . (56)

One can assume that light rays are coming from a static
observer located at position ro and transmitting into the past with
an angular radius Θ with respect to the radial direction:

cotΘ =

√
grr

√gφφ
·
dr
dφ

⏐⏐⏐
r=ro

=
1

r
√
B(r)

·
dr
dφ

⏐⏐⏐
r=ro

, (57)

then the above equation reduces to

cot2Θ =
r2o B(R)
B(ro)R2 − 1, (58)

which can be rewritten as

sin2Θ =
B(ro)R2

r2o B(R)
. (59)

By letting R → rp with rp the circular orbit radius of the
hoton, the critical impact parameter of BH is [91,92]

cr =
rp√
B(rp)

, (60)

s obtained from the photon sphere radius, rp, as the angular
emi-diameter of the shadow around the BH as seen by a distant
bserver. The angular shadow radius for a static observer r0 at a
arge distance is [93,94]

sin2Θ =
B(ro)b2cr

r2o
. (61)

Depicted in Fig. 7 is the angular shadow radius Θ versus a
tatic observer at different locations r0. For asymptotically flat
tatic black holes the shape of the shadow is nothing but the
tandard circle since photons coming from both sides of the static
H have the same value of the deflection angle, on the other hand,
he shadow in the Kottler spacetime which is nonsymptotically
lat such a case the shadow is not circular [93].

Fig. 7 shows the dependence of the shadow angular radius
on cO. As follows from Fig. 7, the BH shadow angular radius

ncrease for increasing the negative value of cO, on the other hand
H shadow angular radius decrease for the positive value of loop
actor c0. It is clear that at a larger static observer distance r0,
hadow angular radius Θ depends on the value of the loop factor
0.

.1. Deflection angle using Rindler–Ishak method

It is clear that light bends around the BH and also other com-
act objects [95–104]. As shown in Fig. 8, the angle ψ between

i
he photon orbit direction d (of components d ) and the direction
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(of components δi) along ϕ = constant line is given by the
indler–Ishak formula [105]

osψ =
gijdiδj√

gijdidj
√
gijδiδj

, (62)

where gij are the coefficients of the 2-metric on θ =
π
2 , t =

constant surface. Substituting d = (dr, dϕ) and δ = (δr, 0) in
(62) one gets

cosψ =
|dr/dϕ|√

|dr/dϕ|
2
+ B(r)r2

, (63)

where to obtain one-sided deflection angle at small ψ (ψ ≪ 1)
we use
1
r

=
sin(ϕ)

R
+

3m
2R2

(
1 +

1
3
cos(2ϕ)

)
, (64)

n which the parameter R is an impact parameter related to the
istance r0 of closest approach by the formula
1
r0

=
1
R

+
m
R2 , (65)

so that we get the photon orbit equation

dr
dϕ

=
mr2

R2 sin(2ϕ) −
r2

R
. (66)

inally, by substituting this orbit equation in (63) the total de-
lection angle (2ϵ = 2ψ = α̂ for ϕ = 0) takes the form

ˆ ≈
4m
R

(
1 −

2m2

R2 −
(1 − a)R4

8πcOGN24m2

)
, (67)

n which the first term is the usual Schwarzschild result. In
ddition to the usual term, the last term with R3, a and loop
actor c0 parameters is that of the Schwarzschild–de Sitter space-
ime [105].

Plotted in Fig. 9 is the photon deflection angle α̂ = 2ψ
for different cO values. It is obvious that the positive/ negative
parameter cO decreases/ increases with the weak deflection angle
α̂ as seen in Fig. 9. Hence, we show that the deviation from
general relativity: when loop factor parameter cO > 0, the
weak deflection angle α̂ is smaller than it by Schwarzschild black
hole; when cO < 0, the weak deflection angle α̂ is larger than
it by Schwarzschild black hole. The results show that for the
increasing impact parameter R, weak deflection α̂ increases for
7

Fig. 8. Illustration of gravitational lensing effect.

Fig. 9. The deflection angle α̂ = 2ψ versus the radius R for Schwarzschild
solution (black curve) and symmergent gravity (cO = 1 (blue curve) and cO = −1
(red curve)) at a = 0.5 and 2GNM = 1. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Schwarzschild-AdS BH, and decreases for the Schwarzschild-dS
BHs.

The dependence of the deflection angle on cO in this figure
reveals that deflection direction gets reversed with the reversal
of the cO sign at large R. This sensitivity to the sign of cO shows
that the bending of light around the BH is a sensitive probe of
the number difference between the bosons and fermions in the
underlying QFT.

6. Effects of plasma on BH shadow

The effects of plasma on the BH shadow worth a separate
discussion. Effects of nonmagnetized cold plasma with electron
plasma frequency [106]

ωp(r)2 =
4πe2

me
N(r), (68)

on the BH shadow in symmergent gravity (36) can be studied
following the methods of [60,107,108]. In this frequency formula,
e is electron electric charge,me is its mass, and N(r) is the number
density of the electrons in the plasma. The refraction index n(ωp)
of this plasma is given by [107]

n(ωp)2 = 1 −

(ωp(r)
ω0(r)

)2
, (69)

here ω0(r) is the photon frequency. Considering a radial power-
aw density N(r) =

N0
rs [106], this refractive index takes the form

n(ωp)2 = 1 −
k
, (70)
r s
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Fig. 10. The BH shadow angular radius Θ seen by a static observer at different
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Fig. 11. The BH shadow angular radius Θ seen by a static observer at different
ocations r0 under plasma medium for various loop factor c0 values at fixed
GNM = 1 and k = 0.6.

here k =
4πe2N0
meω2

0
. In general, different s values correspond

to different plasma properties. For weakest r dependence, it is
convenient to take s = 1 [109].

In the presence of the plasma, photon sphere lies at(
nrB′

− 2nB − 2n′rB

)⏐⏐⏐⏐⏐
r=rp̂

= 0, (71)

with radius of the photon sphere r = rp̂ in plasma medium. The
angular radius of the BH shadow for a static observer r0 at a large
distance then takes the form [60]

sinΘ (pl)
=

rp̂
√
B(r0)

ron(rp̂)
√
B(rp̂)

(72)

hose dependence on k (sensitivity to plasma).
Effects of the plasma (various k values) are depicted in Fig. 10

or symmergent gravity with k = 1, in Fig. 11 for symmergent
ravity with k = 0.6, and in Fig. 12 for symmergent gravity with
= 0.2.
In general, under plasma medium as k decreases, Θ decreases

ppreciably for symmergent gravity. It turns out that plasma have
impact on the BH shadow in symmergent gravity.

. Conclusion

In the present work, we have performed a comprehensive
tudy to built an exact spherically symmetric BH solutions for
n emergent gravity framework called symmergent gravity. The
8

Fig. 12. The BH shadow angular radius Θ seen by a static observer at different
locations r0 under plasma medium for various loop factor c0 values at fixed
2GNM = 1 and k = 0.2.

ravity theory emerges from quantum loops of the underlying
FT, where both the Newton constant GN and the quadratic

curvature coefficient c0 are loop-induced quantities. The symmer-
gent BH differs from the Schwarzschild solution by loop factor
c0, which is proportional to the number difference between the
fermions and bosons in the theory. The symmergent BH reduces
to Schwarzschild solution, AdS/dS solution or Schwarzschild-
AdS/dS solution for different parametric limits of the loop factor
constant cO.

To determine sensitivity of the BH properties on the underly-
ing QFT (or emergent nature of gravity), we have studied various
features of the symmergent BH solution. We have formed 1 table
and 12 figures to display our findings. From Fig. 2 one can see
that the underlying QFT directly affects the horizon radius. Also,
as in the Schwarzschild case, the Kretschman scalar diverges at
the origin due to not the symmergent gravity contribution but the
Schwarzschild piece. From the numerical plot in Fig. 4 it follows
that this the Hawking temperature is a sensitive probe of cO.
Similar size of cO sensitivity is observed also in the BH entropy
(Fig. 6), shadow angular radius (Fig. 7), and photon deflection
angle (Fig. 9). These quantities are sensitive probes of the number
difference between the bosons and fermions in the underlying
QFT. The QFT here is presumably the standard model plus physics
beyond the standard model wherein which dark matter, dark
energy and possibly more are contained.

In Section 5, we have studied the shadow of the symmergent
black hole by using the null geodesics method. We show how the
loop factor parameter cO affects the angular shadow radius Θ for
a static observer at different locations r0 in Fig. 7. The BH shadow
angular radius get bigger for increasing the negative value of cO,
conversely, BH shadow angular radius shrinks for the positive
value of loop factor c0, hence it is concluded that at a larger static
observer distance r0, shadow angular radius Θ depends on the
value of the loop factor c0.

Next, we have studied the gravitational lensing by symmer-
gent BH using Ringdler–Ishak method to check the effect of the
loop factor parameter cO on the weak deflection angle. The weak
deflection angle of photon α̂ for different loop factor parameter
cO values is plotted in Fig. 9. It is clear that the positive/ negative
parameter cO decreases/increases with the weak deflection angle
α̂ as seen in Fig. 9. We show the deviation from general relativity:
when loop factor parameter cO > 0, the weak deflection angle
α̂ is smaller than it by Schwarzschild black hole; when cO < 0,
the weak deflection angle α̂ is larger than it by Schwarzschild
black hole. The results show that for the increasing impact pa-
rameter R, weak deflection α̂ increases for Schwarzschild-AdS BH,
and decreases for the Schwarzschild-dS BHs. The dependence of
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he deflection angle on cO in this figure reveals that deflection
irection gets reversed with the reversal of the cO sign at large R.
ence, this sensitivity to the sign of cO shows that the bending of
ight around the BH is a sensitive probe of the number difference
etween the bosons and fermions in the underlying QFT.
The question of whether the BH shadow angular radius

hanges in the presence of a medium around a gravitating body
s a relevant one and we performed this analysis in the last part.
ur results show that under plasma medium as k decreases, Θ
ecreases appreciably for symmergent gravity. It turns out that
lasma have a impact on the BH shadow in symmergent gravity
s seen in the effect of the plasma (various k values) depicted
n Fig. 10 for symmergent gravity with k = 1, in Fig. 11 for
ymmergent gravity with k = 0.6, and in Fig. 12 for symmergent
ravity with k = 0.2.
In this paper what we get is an AdS/dS type black hole solution

n symmergent gravity as f (R) gravity with the effective cosmo-
ogical constant depending on the model parameters such as the
oop factor cO. The effective cosmological constant is something
hat can be tested in experiments. Moreover, de Sitter spacetime
upports the cosmic inflation and de Sitter universe is a well-
tructured model of the late universe. The dS type black hole
olution can be thought of as the primordial black hole or black
ole in the late stages of the universe. It can be detected in
ear future experiments. Here, by using this model, we show
hat cosmological constant drives the cosmological expansion,
nd black hole shadow carries the imprints of the cosmological
xpansion.
Recently, EHT has been able to measure polarization, a sig-

ature of magnetic fields of the edge of a black hole [110,111],
t is expected that in near future EHT would able to detect the
mprints of dark matter on black hole shadow and in long term,
t would achieve the resolution required to observe the influence
f emergent gravity on black hole shadow. Further research can
hus shed light on the modified gravity theories such as emergent
ravity.
With regards to future work, it would be interesting to con-

truct a stationary black hole solution and study its shadow and
uasinormal modes that may shed some light on possible signa-
ure of the existence of the emergent gravity in the observations
f EHT or LIGO. Besides, measurement of the model parameters
an reveal the structure of the matter sector. For instance, a
easurement of cO gives the number difference between the
osons and fermions in the matter sector (a renormalizable QFT
omprising the known matter). This field-theoretic meaning is
ot something does not exist in other emergent gravity theories.
et us suppose that future data (from the EHT or others) prefer
specific value c(exp)O . Then, symmergent gravity immediately

ixes boson–fermion number difference to be (nB − nF )(exp) =

048c(exp)O . This experimental value will imply new physics be-
ond the Standard Model, and the implied new particles can be
earched at collider experiments like the LHC experiments. This
ravity-matter concord is not present in other gravity theories,
nd it is in this sense that symmergent gravity is distinguished
o have physical implications for both the gravity and matter
ectors [8,11,12].
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