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In this paper, we model a canonical acoustic thin-shell wormhole (CATSW) in the frame-
work of analogue gravity systems. In this model, we apply cut and paste technique to
join together two spherically symmetric, analogue canonical acoustic solutions, and com-
pute the analogue surface density/surface pressure of the fluid using the Darmois—Israel
formalism. We study the stability analyses by using a linear barotropic fluid (LBF),
Chaplygin fluid (CF), logarithmic fluid (LogF), polytropic fluid (PF) and finally Van
der Waals Quintessence (VDWQ). We show that a kind of analog acoustic fluid with
negative energy is required at the throat to keep the wormhole stable. It is argued that
CATSW can be a stabile thin-shell wormhole if we choose a suitable parameter values.
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1. Introduction

According to the General Theory of Relativity, there is a possibility to form a
wormhole by connecting two different spacetime regions of the universe.!? Recently,
traversable wormhole solutions were found by Morris and Thorne,>* who argued
that, if traversable wormholes exist, one needs to invoke a negative energy at the
throat which sometimes is known as exotic matter.* The idea was put forward
by Visser, who introduced the concept of thin-shell wormholes, which allows us
to construct a wormhole simply by cutting and pasting two spacetime regions.* 8
This method attracted a lot of interest among physicists and a number of papers

have been written on this topic (see for example Refs. 9-33).
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In a seminal paper, Unruh,3* for the first time found an analogy connecting
black holes and sonic black holes and raised the question whether is possible to
detect the Hawking radiation (sometimes known as Hawking—Unruh radiation) in
a laboratory.?®36 One can show that, under linearized perturbations, the equations
of motion of a moving fluid is an equivalent way to describe the propagation of a
massless scalar field in a curved spacetime.3” One particular example is to study
the wave equation for sound waves in a moving fluid as an analogue for light waves
in a curved spacetime.%6

In the context of analogue black hole models, a number of interesting analogue
metrics have been found, up to a conformal factor. In particular, the Schwarzschild
type metric solution known as a canonical acoustic metric and the Painleve—
Gullstrand acoustic metric,3” a rotating analogue metric,>” 3% analogue AdS and
dS black hole solutions*? and references therein. Furthermore, Nandi et al#® in-
troduced the idea of acoustic traversable wormholes and showed that this analogy
model can be used to investigate the nature of curvature singularity, to study the
light ray trajectories in an optical medium is equivalent to the sound trajectories in
its acoustic analog. On the other hand, acoustic black holes are studied to calculate
the quasinormal modes, superradiance and area spectrum by Saavedra.40:4!

In this paper, we aim to model a spherically symmetric, thin-shell wormhole
within the framework of analogue gravity systems. In particular, we aim to ex-
plore the stability of the acoustic wormhole by modeling the analogue fluid with
a linear barotropic fluid (LBF),4"4® Chaplygin fluid (CF),29:50:5455 |ogarithmic
fluid (LogF),!32° polytropic equation of state for the fluid®l and Van der Waals
Quintessence (VDWQ).?3

The paper is organized as follows. In Sec. 2, we review the canonical acoustic
metric. In Sec. 3, we construct an analogue, canonical thin-shell wormhole and show
that an analog exotic fluid with negative energy is required at the throat to keep
the wormhole stable. In Sec. 4, we investigate the stability analyses by modeling
the analogue fluid by an LBF, CF, and LogF, polytropic fluid (PF) and VDWQ.
In Sec. 5, we comment on our results.

2. Canonical Acoustic Black Holes

We can start by writing the spherically symmetric solution of incompressible fluid

or the so-called canonical acoustic black hole metric found by Visser written as

follows:37:43

2 2
ds? = —c?dt} + (dr + c:—g dtl> + r2(d6? + sin? 0 d¢?) (1)

in which c is the speed of sound through the fluid, v is the fluid velocity and #; is
the laboratory time. Moreover, c is related with the velocity v as follows:

v=c—. (2)
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However, it is more convenient to write the metric (1) as a Schwarzschild type
metric. If we introduce the Schwarzschild time coordinate ¢, which is related to the
laboratory time ¢; by the following coordinate transformation

rg/r? .
dt—)dtl:tic(l_(rg/ﬂ))d ) (3)

Then, it is not difficult to show that we end up with a spherically symmetric acoustic

metric also known as a canonical acoustic black hole ag3:44
d 2
ds? = —2f(r)de? + ﬁ +r2(d62 + sin? 0 dg?), (4)
in which
0
fry=1-". Q

The event horizon of the canonical acoustic black hole is computed by solving
grr(rr) = 0, so that one gets

Th =T0. (6)
The corresponding gravitational acceleration for the acoustic black hole horizon can
be computed as follows:
ov” _ 2c

or T=Tp To

(7)

The analogue Hawking temperature for the canonical acoustic black holes due to
the emission of phonons is given by%3

Ko =

Ko 1

Ty=—=—. 8
H = one ™o (8)

Without loss of generality, from now on, we can set the speed of sound to unity,

i.e. ¢ = 1. In what follows, we are going to make use of the metric (4) to model

canonical acoustic thin-shell wormhole (CATSW).

3. Canonical Acoustic Thin-Shell Wormbholes

Let us now proceed to use cut and paste technique to construct a CATSW using
the metric (4) and choosing two identical regions

M® =& > g 0>}, (9)

in which a is chosen to be greater than the event horizon rj. If we now paste these
regular regions at the boundary hypersurface 2 = {r(¥) = q,a > 75}, then we
end up with a complete manifold M = M+ UM . In accordance with the Darmois—
Israel formalism the coordinates on M can be chosen as z®* = (¢,7,0,¢). On the
other hand for the coordinates on the induced metric ¥, we write £ = (7,6, ¢) which
are related to the coordinates on M by the following coordinate transformation
a 9B
9ij = %%gaﬁ (10)
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Finally for the parametric equation on the induced metric ¥, we write
S:F(r,7)=r—a(r)=0. (11)

Note that in order to study the dynamics of the induced metric ¥, in the last
equation, we let the throat radius of the wormhole to be time dependent by incor-
porating the proper time on the shell, i.e. a = a(7). More specifically making use
of (10), for the induced metric, we have

ds3 = —d72 + a(7)(d6? + sin® 0 dg?) . (12)

The junction conditions on ¥ reads

i 1 i i
5% = — g (K] = 6% K). (13)
Note that in the last equation S*; = diag(—a, pg, pe) is the energy-momentum
tensor on the thin-shell, on the other hand K and [Kj;], are defined as K =
trace [K;] and [K;;] = K;; 7 — K;; ™, respectively. Keeping this in mind, we can go
on by writing the expression for the extrinsic curvature K*; as follows:

2 .0 or™ axﬁ
@ _ [0 p 9T
K\ = — — 4T _ . . 14

1] nM <8518§J + Oz,B agl ag‘j >Z ( )

%) which are normal to M(¥) are chosen as

—1/2 OF
n(® = i( g W) . (15)
by

Then the extrinsic curvature components are calculated as2!

1
Kj* = K" = -/ f(a) + (16)

The unit vectors n,,(

ap OF OF
Oxe OxP

and
KTt — ¢ 2 + f(a)
T 2v/f(a) + a2’
in which the prime and the dot represent the derivatives with respect to r and 7,
respectively. Using the definitions [K;;] = KZ - K;;, and K = tr[K;;] = [K"4],
and the surface stress—energy tensor S;; = diag(o,ps,pe) it follows the Lanczos
equations on the shell

(17)

—[Kij] + Kgi; = 87TSij . (18)

Note that for a given radius a, the energy density on the shell is o, while the
pressure p = pg = py. If we now combine the above results for the surface density
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and the surface pressure

p:

V@) +a?[2a+ f'(a) 2
-+ (20)
8 fla)+a a

At this point, let us briefly mention that since we are going to study the wormhole
stability at a static configuration, from now on, ag will be a constant. This implies
that we need to set @ = 0, and d = 0. For the surface density in static configuration

it follows that

7o = - LL0) (1)

and similarly the surface pressure
a "(a 2
- Ve 1e) 2]
87 [ flao) a0

It is obvious from Eq. (27) that the surface density is negative, i.e. oy < 0, which

(22)

implies that the weak and dominant energy conditions are violated. At this stage,
it is interesting to calculate the amount of exotic matter at the wormhole by using
the integral

% = [Vl + s, (23)

But since we are dealing with a thin-shell wormhole, we must choose p, = 0 and
p = 0d(r —a), where 0(r — a) is the Dirac delta function. Solving this integral leads
to the following result:

Qg:AQW/Ow[ZUMTgé(T—a)drded¢. (24)

Finally, the energy density of the exotic matter located on a thin-shell surface is
calculated as

Q= —2a04 |1 — % . (25)
0

The wormhole can have attractive/repulsive nature, to see this let us calculate
the observes four-acceleration a* = v’V u", in which u* is the four velocity. We
are left with the radial component of the acceleration

. - [ dt 2 2rd

The test particle obeys the equation of motion if
d2r L (dt\? .
@ = _Ftt (d/]—) = —a . (27)

From Eq. (26) follows three special cases. We can recover the geodesic equation if
a” = 0, wormbhole is attractive if a” > 0, and repulsive if a” < 0.
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4. Stability Analysis

In this section, we are going to analyze the stability of the CATSW. Starting from
the energy conservation it follows that

d dA
(@A) +p - =0, (28)

where A = 47a? is the area of the wormhole throat. By replacing o(a), we can find
the equation of motion as follows:

a* = —-V(a), (29)
with the potential
V(a) = f(a) — 47200 (a). (30)

In order to investigate the stability of CATSW let us expand the potential V'(a)
around the static solution by writing

V//(ao)

V(a) = V(ag) + V'(ag)(a — ag) + (a —ap)* + O(a — ag)®. (31)

From Eq. (30), we can find the first derivative of V(a)
V'(a) = f'(a) — 87%ac(a)[o(a) + ac’(a)]. (32)

Furthermore, if we use

o'(a) = 2 [o(a) + pla)], (3)
we can rewrite the first derivative of V(a) as
V'(a) = f'(a) + 872ac(a)[o(a) + 2p(a)] . (34)
The second derivative of the potential is
V(@) = £(a) + 87 {[a0 () + o(a)]fo(a) + 2p(a)] + ac(a)lo"(a) + 29/ (a)]} . (35)

If we now use o’ (a)+2p'(a) = o’(a)[142p'(a) /0’ (a)], and introduce the function
p = (o), for the first derivative we have ¢/ = dp/doc = p’/c’, which implies
o'(a)+2p'(a) = o' (a)(1+2¢'). Putting all together the above results, from Eq. (35),
we obtain

V" (ao) = f"(ao) — 87*{[o0 + 2po)* + 200[00 + po] (1 4+ 2¢)} . (36)

The wormbhole is stable if and only if V" (ag) > 0. The equation of motion of the
throat for a small perturbation becomes?*®

d2+@(a—ao)2 =0. (37)
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Fig. 1. We plot the stability regions as a function of w and radius of the throat ag. We have
chosen three different values rg = 0.5, 1o = 1 and r¢9 = 2.

Noted that for the condition of V" (ag) > 0, CATSW is stable where the motion

of the throat is oscillatory with angular frequency w = 4/ %‘LO) In this work, we
are going to use five different models for the fluid to explore the stability analysis;
a LBF, 4748 CF,49:50:54,55 T oo 13:20 polytropic equation of state for the fluid®! and

finally VDWQ.%3

4.1. Stability analysis of CATSW wvia the LBF

In our first case, we choose an LBF with the equation of state given by?*748
Y =wo, (38)
it follows that
Y (00) = w. (39)

Note that w is a constant parameter. In order to see more clearly the stability,
we show graphically the dependence of w in terms of aq for different values of the
parameter 7y in Fig. 1.

4.2. Stability analysis of CATSW wvia the CF
According to the CF, we can model the fluid with the following equation of

State:49’50’54’55
1 1
w:w(g_o'o> +p0, (40)
to find
w
Wion) =~ (a1)
0

To see the stability regions, let us show graphically the dependence of w in terms
of ag for different values of the parameter ry, given in Fig. 2.
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Fig. 2. Here we plot the stability regions as a function of w and radius of the throat ag. We have
chosen three different values ro = 1, ro = 0.5 and r¢ = 4.

Fig. 3. The stability regions as a function of w and radius of the throat ag, in which we have
chosen three different values rg = 0.1, r9 = 0.5, ro = 1 and 79 = 3.

4.3. Stability analysis of CATSW via the LBF

Our next example is the LogF,'320 with the equation of state
¥ =wln (U) + o, (42)
0o
then
w
V' (00) = —. (43)
o0

For detailed information, we can show graphically the dependence of w in terms of
ap by choosing different values of the parameter ry, in Fig. 3.

4.4. Stability analysis of CATSW wvia polytropic fluid

The equation of state for the fluid according to the polytropic model can be written
51,52
as°h

Y =wo?, (44)
It follows that
Y (00) = wyod *. (45)

For detailed information, we plot w in terms of ag by choosing different values of
the parameter rqg, as shown in Fig. 4.
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Fig. 4. Stability regions in terms of w and radius of the throat ag for different values of rq.

10 10 10 10
B=1 B=1 B=1 B=5
y=1 y=1 ¥=0.1 7=1

3 r =01 5 7,=05 5 7= 0.1 5 =01

Fig. 5. Stability regions of CATSW in terms of w and radius of the throat ag for different values
of v, B and rg.

4.5. Stability analysis of CATSW via Van der Waals Quintessence

The equation of state for the fluid according to the Van der Waals quintessence

model can be written as®?

_9 02
1-Bs 7 (46)

where v, B and « are constants. It follows that

Y=

—2a0(Bo —1)% +~
(Ba—12

¥’ (00) = (47)
For more useful informations for the acoustic wormhole stability, we plot « and ag
for different values of the parameters ~, ro and B, as shown in Fig. 5.

5. Conclusion

In this paper, we constructed a spherically symmetric, CATSW, in the context of
analogue gravity systems. We have used cut and paste method to join together two
regular regions, then, we have computed the analogue surface density and surface
pressure of the fluid. The stability analyses are carried out using a LBF, CF, LogF,
PF, VDWQ), for the fluid and show that the wormhole can be stable if one chooses
suitable parameter values. We show that acoustic fluid with negative energy is
required at the throat to keep the wormhole stable.
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