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Abstract In this paper we construct a charged thin-shell
gravastar model within the context of noncommutative geom-
etry. To do so, we choose the interior of the nonsingular de
Sitter spacetime with an exterior charged noncommutative
solution by cut-and-paste technique and apply the general-
ized junction conditions. We then investigate the stability
of a charged thin-shell gravastar under linear perturbations
around the static equilibrium solutions as well as the ther-
modynamical stability of the charged gravastar. We find the
stability regions, by choosing appropriate parameter values,
located sufficiently close to the event horizon.

1 Introduction

One of the most interesting and challenging problems in mod-
ern astrophysics is related to compact astrophysical objects
like black hole which is widely accepted. The black holes
are the end-point of a complete gravitational collapse of the
massive star, which can be described by the Einstein theory
of gravity, containing singularities and being surrounded by
a boundary from which nothing, not even light, can escape.
The event horizon of a black hole which acts like a one-way
membrane, is a boundary between its exterior and its interior
spacetime. Astronomers have found convincing evidence for
the existence of supermassive black holes, especially the one
corresponding to SgrA* in the Milky Way [1] thus estab-
lishing the concept of a black hole. However, extending the
concept of Bose–Einstein condensate [2] to gravitational sys-
tems, the gravitational vacuum star (gravastar) was proposed
as an alternative to black holes by Mazur and Mottola (MM)
[3,4], which does not involve horizons and could be stabilized
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through the exotic states of matter. For this purpose, they use
the famous cut-and-paste technique with Israel junction con-
ditions [5]. There are many applications of this cut-and-paste
technique; for example thin-shell wormholes [6–13].

In this model a multi layered structure has been intro-
duced: a de Sitter geometry in the interior filled with con-
stant positive (dark) energy density accompanied by isotropic
negative pressure p = −ρ, while the exterior is defined by
a Schwarzschild geometry, separated by a thin shell of stiff
matter implying the configuration of a gravastar. Moreover,
the gravastar model has no singularity at the origin and no
event horizon [14–28].

These alternative models are quite fascinating; they could
solve two fundamental problems. One is the singularity prob-
lem and the other is the information loss paradox, two prob-
lems which are associated with black hole solutions. After
this new emerging picture several researchers have analyzed
the gravastar solutions using different approaches. A dif-
ferent development of the thick-shell anisotropic gravastar
model idea is due to Cattoen et al. [29], with continuous pro-
files for the energy density and the anisotropic pressures. One
development of the gravastar idea went in the direction of an
analysis of stability against radial perturbations by Visser and
Wiltshire [30], with the phase transition layer replaced by a
single spherical δ-shell. These facts, frequently motivating
other possibilities for the interior solution, have been consid-
ered. Among them Bilić et al. [31] have replaced the de Sit-
ter interior by a Born–Infeld phantom. Recently, the gravas-
tar solution extended by introducing an electrically charged
component in [32] and charged gravastar admitting confor-
mal motion has proposed in [33]. Further expanding the work
of Banerjee et al. have propose the braneworld gravastar con-
figuration which is alternative to braneworld black hole [34].
This theoretical prediction is strongly supported by the differ-
ent authors and for more comprehensive review is provided
in [35–38].
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The main topic that we would like to address in this paper
is exact charged thin-shell gravastar solutions in the context
of noncommutative geometry where coordinates of the target
spacetime become noncommutating operators on a D-brane
[39,40] as [x̂μ, x̂ν] = iϑμν , where x̂ and iϑμν are the coor-
dinate operators and an antisymmetric tensor of dimension
(length)2, which determines the fundamental cell discretiza-
tion of spacetime. In addition to noncommutativity elimina-
tion is characterized by a Gaussian function distribution with
a minimal width

√
θ , i.e. a smeared particle, instead of the

Dirac-delta function distribution. In spite of the progress a
lot of work has been done on black holes with such Gaus-
sian sources so far like higher dimensional black hole [41],
charged black hole [42–44] and charged rotating black hole
solutions [45,46]. A way of implementing the energy density
of a static and spherically symmetric, smeared and particle-
like gravitational source has been considered in the following
form [47]:

ρθ = M

(4πθ)
3
2

e− r2
4θ , (1)

where the mass M is diffused throughout a region of linear
dimension

√
θ due to the uncertainty.

Recently, one considers the LIGO detectors to have mea-
sured the first direct signal of the gravitational wave from
rotating gravastars comparing the real and imaginary parts
of the ringdown signal of GW150914 and one concluded
that the modeling of the ringdown of GW150914 from the
rotating gravastar is not possible [48].

In further research on noncommutative geometry the
most significant development has been performed for obtain-
ing exact solutions of self-sustained traversable wormholes
[49,50], thin-shell wormholes [51] and gravastar solutions
in higher and lower dimensional spacetime [52,53] etc. The
main topics that we would like to address in this paper is
finding exact gravastar solutions in the context of noncom-
mutative geometry and exploring their physically accepted
properties. The plan of our paper as follows. In Sect. 2 we
construct the generic structure equations of charged gravas-
tars, in the context of noncommutative geometry, and we
specify the mass function. In Sect. 3 we discuss the match-
ing conditions at the junction interface and determine the
surface stresses. In Sect. 4 we investigate the stability of the
charged thin-shell gravastar. In Sect. 5 we shall consider the
thermodynamical stability. Finally, in Sect. 6, we comment
on our results.

2 Exterior of gravastars: noncommutative geometry
inspired charged BHs

The metric of a noncommutative charged black hole is
described by the metric given by [42–44]

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2, (2)

with f (r) =
(

1 − 2Mθ

r + Q2
θ

r2

)
, where the mass and charge

functions are defined by

Mθ (r) = 2M√
π

γ

(
3

2
,
r2

4θ

)
, (3)

Qθ (r) = Q√
π

√
γ 2

(
1

2
,
r2

4θ

)
− r√

2θ
γ

(
1

2
,
r2

2θ

)
, (4)

and

γ
(a
b
, x
)

=
∫ x

0
u

a
b −1e−udu. (5)

Here, the metric (2) leads to the result

f (r) = 1 − 4M

r
√

π
γ

(
3

2
,
r2

4θ

)

+ Q2

r2π

[
γ 2
(

1

2
,
r2

4θ

)
− r√

2θ
γ

(
1

2
,
r2

2θ

)]
(6)

where M is the total (constant) mass of the system and for
the commutative case when r/

√
θ → ∞, the smeared-like

mass descends to the point-like mass, i.e. Mθ → M . Q is
the total charge of the black hole. It is noted that, for large r ,
Reissner–Nordstrm black hole will be obtained. The horizon
radius (rh) can be found where f (rh) = 0 in other words.

3 Structure equations of charged gravastars

To construct the charged gravastars, first we consider two
noncommutative geometry inspired charged spacetime man-
ifolds. The exterior is defined by M+, and the interior is
M−. Then we join them together by using the cut-and-paste
method across a surface layer 
 [17]. The metric of interior
is the nonsingular de Sitter spacetimes:

ds2 = −
(

1 − r2−
α2

)
dt2− +

(
1 − r2−

α2

)−1

dr2− + r2−d�2− (7)

and the exterior of noncommutative geometry inspired
charged spacetimes:

ds2 = − f (r)+dt2+ + f (r)−1+ dr2+ + r2+d�2+ (8)

with

f (r)+ =
(

1 − 2Mθ+
r

+ Q2
θ+
r2

)
. (9)
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Note that ± stands for the exterior and interior geometry,
respectively.

The induced metrics are g+
i j and g−

i j , respectively. It is

assumed that g+
i j (ξ) = g−

i j (ξ) = gi j (ξ), where the hypersur-

face coordinates ξ i = (τ, θ, φ). Our aim is to glue M+ and
M− at their boundaries to obtain a single manifold M so that
M = M+ ∪ M−, at the boundaries 
 = 
+ = 
−.

To calculate the stress-energy tensor components, we use
the intrinsic metric on 
 as follows:

ds2

 = −dτ 2 + a(τ )2 (dθ2 + sin2 θ dφ2). (10)

Then we use the Einstein field equation, Gμν = 8π Tμν ,
where it is noted that c = G = 1. Note that the junction
surface is located at xμ(τ, θ, φ) = (t (τ ), a(τ ), θ, φ). One
finds that the unit normal vectors with respect to the junction
surface are the following [17]:

nμ
− =
⎛
⎝ 1(

1 − a2

α2

) ȧ,

√(
1 − a2

α2

)
+ ȧ2, 0, 0

⎞
⎠ , (11)

nμ
+ =
⎛
⎝ 1

1 − 2Mθ+
a + Q2

θ+
a2

ȧ,

√
1 − 2Mθ+

a
+ Q2

θ+
a2 + ȧ2, 0, 0

⎞
⎠ ,

(12)

where the overdot stands for a derivative with respect to τ .
For the spherical symmetric spacetimes, the condition of the
normal vectors is nμnμ = +1. The extrinsic curvatures are
calculated by the following equation [21]:

K±
i j = −nμ

(
∂2xμ

∂ξ i ∂ξ j
+ �

μ±
αβ

∂xα

∂ξ i

∂xβ

∂ξ j

)
(13)

so we find

K θ −
θ = 1

a

√(
1 − a2

α2

)
+ ȧ2 , (14)

K τ −
τ =

⎧⎪⎪⎨
⎪⎪⎩

(
ä − a

α2

)
√(

1 − a2

α2

)
+ ȧ2

⎫⎪⎪⎬
⎪⎪⎭

, (15)

K θ +
θ = 1

a

√
1 − 2Mθ+

a
+ Q2

θ+
a2 + ȧ2 , (16)

K τ +
τ =

⎧⎪⎪⎨
⎪⎪⎩

ä + (Mθ+a)−Q2
θ+

a3√
1 − 2Mθ+

a + Q2
θ+
a2 + ȧ2

⎫⎪⎪⎬
⎪⎪⎭

. (17)

It is noted that the prime is for a derivative with respect to
the a. Then we calculate the discontinuity as follows: κi j =
K+
i j − K−

i j .

The stress-energy tensors Sij on 
 are calculated as fol-
lows:

Sij = − 1

8π

(
κ i

j − δi j κk
k

)
. (18)

Then using the relation of Sij = diag(−σ,P,P), one can
find the surface energy density, σ , and the surface pressure,
P , as follows [17]:

σ = −κθ
θ

4π
= − 1

4πa

⎡
⎣
√

1 − 2Mθ+
a

+ Q2
θ+
a2 + ȧ2

−
√(

1 − a2

α2

)
+ ȧ2

⎤
⎦ , (19)

P = κτ
τ + κθ

θ

8π
= 1

8πa

⎡
⎢⎢⎣ 1 + ȧ2 + aä − Mθ+

a√
1 − 2Mθ+

a + Q2
θ+
a2 + ȧ2

−
(

1 + aä + ȧ2 − 2a2

α2

)
√(

1 − a2

α2

)
+ ȧ2

⎤
⎥⎥⎦ . (20)

Then we find

σ + 2P = κτ
τ

4π
= 1

4π

⎡
⎢⎢⎣

⎧⎪⎪⎨
⎪⎪⎩

ä + (Mθ+a)−Q2
θ+

a3√
1 − 2Mθ+

a + Q2
θ+
a2 + ȧ2

⎫⎪⎪⎬
⎪⎪⎭

−

⎧⎪⎪⎨
⎪⎪⎩

(
ä − a

α2

)
√(

1 − a2

α2

)
+ ȧ2

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦ . (21)

To calculate the surface mass of the thin shell, one can use
the equation Ms(a) = 4πa2σ . To find a stable solution, we
consider a static case [a0 ∈ (r−, r+)].

Then the surface charge and pressure in the static case
reduce to

σ(a0) = − 1

4πa0

⎡
⎣
√

1 − 2Mθ+
a0

+ Q2
θ+
a2

0

−
√√√√
(

1 − a2
0

α2

)⎤
⎦ ,

(22)

P(a0) = 1

8πa0

⎡
⎢⎢⎢⎢⎣

1 − Mθ+
a0√

1 − Mθ+
a0

+ Q2
θ+
a2

0

−

(
1 − 2a2

0
α2

)
√(

1 − a2
0

α2

)

⎤
⎥⎥⎥⎥⎦ . (23)
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Then one can write

σ(a0) + 2P(a0) = 1

4π

⎡
⎢⎢⎣

⎧⎪⎪⎨
⎪⎪⎩

(Mθ+a0)−Q2
θ+

a3
0√

1 − 2Mθ+
a0

+ Q2
θ+
a2

0

⎫⎪⎪⎬
⎪⎪⎭

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
a0
α2

)
√(

1 − a2
0

α2

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎦ . (24)

Then we derive the conservation equation as follows:

d(σ A)

dτ
+ P

dA

dτ
= 0, (25)

using Sij |i =
[
Tμν eμ

( j)n
ν
]+
−, where the surface area is A =

4πa2. One can write them also as follows: σ ′ = −2 (σ +
P)/a, where σ ′ = dσ/da.

4 Stability of the charged thin-shell gravastars in
noncommutative geometry

In this section, we check the stability of the charged thin-shell
gravastars in noncommutative geometry. To this purpose, we
use the surface energy density σ(a) on the thin shell of the
gravastars as follows:

1

2
ȧ2 + V (a) = 0, (26)

with the potential

V (a) = 1

2

{
1 − B(a)

a
−
[
Ms(a)

2a

]2

−
[
D(a)

Ms(a)

]2
}

. (27)

It is noted that B(a) and D(a) are

B(a) =

[(
2Mθ+ − Q2

θ+
a

)
+
(
a3

α2

)]

2
,

D(a) =

⎡
⎢⎢⎣

[(
2Mθ+ − Q2

θ+
a

)
−
(
a3

α2

)]

2

⎤
⎥⎥⎦ . (28)

One can also easily obtain the surface mass as a function of
the potential:

Ms(a) = −a

⎡
⎣
√

1 − 2Mθ+
a

+ Q2
θ+
a2 − 2V (a)

−
√

(1 − a2

α2 ) − 2V (a)

⎤
⎦ . (29)

Then the surface charge and the pressure are rewritten in
terms of potential as follows:

σ = − 1

4πa

⎡
⎣
√

1 − 2Mθ+
a

+ Q2
θ+
a2 − 2V

−
√

(1 − a2

α2 ) − 2V

⎤
⎦ , (30)

P = 1

8πa

⎡
⎢⎢⎣ 1 − 2V − aV ′ − Mθ+

a√
1 − 2Mθ+

a + Q2
θ+
a2 − 2V

−
1 − 2V − aV ′ −

(
2a
α2

)
√

(1 − a2

α2 ) − 2V

⎤
⎦ . (31)

To find the stable solution, we linearize it using the Taylor
expansion around the a0 to second order as follows:

V (a) = 1

2
V ′′(a0)(a − a0)

2 + O[(a − a0)
3] . (32)

Note that for stability, the conditions are V (a0) = V ′(a0) =
0, ȧ0 = ä0 = 0 and V ′′(a0) > 0. Using the relation Ms(a) =
4πσ(a)a2, we use M ′′

s (a0) instead of V ′′(a0) ≥ 0 as follows
[17]:

M ′′
s (a0) ≥ 1

4a3
0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
2
(
Mθ++Q2

θ+
)

a0

]2

[
1 − 2Mθ+

a0
+ Q2

θ+
a2

0

]3/2 − [−a3
0

α2 ]2

[(
1 − a2

0
α2

)]3/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+1

2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2Q2
θ+

a3
0√

1 − 2Mθ+
a0

+ Q2
θ+
a2

0

−
4a0
α2√(

1 − a2
0

α2

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (33)

so for the stable solution, the above relation must be satisfied
as shown in Fig. 1. Note that we have used the following
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Fig. 1 We plot σ0 + p0 as a function of Mθ and a0. We choose Qθ = 1
and α = 0.4. Note that in this region the NEC is satisfied

equation:

V ′′(a0) = −3M2
s (a0)

4a4
0

+
[M ′

s(a0)

a3
0

− M ′′
s (a0)

4a2
0

]
Ms(a0)

− B ′′(a0)

2a0
+ B ′(a0)

a2
0

− B(a0)

a3
0

− M ′
s(a0)

2

4a2
0

−D′2(a0) + D(a0)D′′(a0)

M2
s (a0)

+4D(a0)D′(a0)M ′
s(a0) + D2(a0)M ′′

s (a0)

M3
s (a0)

−3D2(a0)(M ′
s)

2(a0)

M4
s (a0)

, (34)

where

M ′
s(a0) = 8πa0σ0 − 8πa0(σ0 + p0) (35)

and

M ′′
s (a0) = 8πσ0 − 32π(σ0 + p0)

+ 4π [2(σ0 + p0) + 4(σ0 + p0)(1 + η)] . (36)

Moreover, we have also introduced η(a) = P ′(a)/σ ′
(a)|a0 as a parameter which will play a fundamental role in
determining the stability regions of the respective solutions.
Generally, η is interpreted as the speed of sound, so that one
would expect the range of 0 < η ≤ 1; the speed of sound
should not exceed the speed of light. But the range of η may
be lying outside the range of 0 < η ≤ 1, on the surface layer
and for extensive discussion, see Refs. [54,55]. Therefore, in
this work the range of η will be relaxed and we use a graphical
representation to determine the stability regions given by Eq.
(34), due to the complexity of the expression (Figs. 2, 3, and
4).

Fig. 2 Stability regions of the charged gravastar in terms of η = P ′/σ ′
as a function of a0. We choose Mθ = 2, Qθ = 1.5, α = 0.4

Fig. 3 Stability regions of the charged gravastar in terms of η = P ′/σ ′
as a function of a0. We choose Mθ = 1.5, Qθ = 1, α = 0.2

5 Thermodynamics and stability conditions for the thin
shell

Now, we turn to the thermodynamical stability of the thin
shell. Following [56], we assume that the shell is in thermal
equilibrium, with a locally measured temperature T and an
entropy S. Here the entropy S can be expressed as a function
of the state independent variables of the surface mass of the
thin shell M , area A, and charge Q. Thus the first law of
thermodynamics provides the following relationship:

T dS = dM + pdA − �dQ, (37)

where (M, A, Q) can be considered as three generic param-
eters. It is important to note that we consider the particles
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Fig. 4 Stability regions of the charged gravastar in terms of η = P ′/σ ′
as a function of a0. We choose Mθ = 3, Qθ = 2.5, α = 0.5

N to be constant. Now it is a simple matter to obtain the
entropy S we shall adopt three equations of state, namely,
p (M, A, Q), β (M, A, Q), and �(M, A, Q): the pressure,
temperature, and charge equations of state, respectively and
we define the inverse temperature β ≡ 1/T .

It is of particular interest to obtain an expression for
the entropy. The integrability conditions must be specified,
which follow directly from the first law of thermodynamics
and are given by(

∂β

∂A

)
=
(

∂βp

∂M

)
A,Q

, (38)

(
∂β

∂Q

)
=
(

∂β�

∂M

)
A,Q

, (39)

(
∂βp

∂Q

)
=
(

∂β�

∂A

)
M,Q

. (40)

Thus, one may easily determine the relations between the
three EOS of the system. This result also is at the basis of the
study of the local intrinsic stability of the shell, by the first
law in Eq. (2). It is more convenient to work out the thermo-
dynamic stability as dictated by the following inequalities:

(
∂2S

∂M2

)
A,Q

≤ 0, (41)

(
∂2S

∂A2

)
M,Q

≤ 0, (42)

(
∂2S

∂Q2

)
M,A

≤ 0, (43)

(
∂2S

∂M2

)(
∂2S

∂A2

)
−
(

∂2S

∂M∂A

)2

≥ 0, (44)

(
∂2S

∂A2

)(
∂2S

∂Q2

)
−
(

∂2S

∂A∂Q

)2

≥ 0, (45)

(
∂2S

∂M2

)(
∂2S

∂Q2

)
−
(

∂2S

∂M∂Q

)2

≥ 0, (46)

(
∂2S

∂M2

)(
∂2S

∂Q∂A

)
−
(

∂2S

∂M∂A

)(
∂2S

∂M∂Q

)
≥ 0, (47)

For more discussion and derivation of these expression, see
Refs. [57,58].

6 Conclusions

In this paper, we have studied the stability of a particular class
of thin-shell gravastar solutions, in the context of charged
noncommutative geometry. For this purpose we consider the
de Sitter geometry in the interior of the gravastar by matching
an exterior charged noncommutative solution at a junction
interface situated outside the event horizon. We showed that
the gravastar’s shell satisfies the null energy conditions in
Fig. 1.

We further explored the gravastar solution by the dynam-
ical stability of the transition layer, which is sufficient close
to the event horizon. It is found that for specific choices of
the mass Mθ , charge Qθ and the values of α, stable configu-
rations of the surface layer exist, sufficiently close to where
the event horizon is expected to form. In future work we
shall explore the thermodynamical stability of the thin-shell
gravastar, using the shell in the thermal equilibrium.
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