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Circular orbit of a particle and weak gravitational lensing
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The purpose of this paper is twofold. First, we introduce a geometric approach to study the circular orbit
of a particle in static and spherically symmetric spacetime based on Jacobi metric. Second, we apply the
circular orbit to study the weak gravitational deflection of null and timelike particles based on Gauss-
Bonnet theorem. By this way, we obtain an expression of deflection angle and extend the study of
deflection angle to asymptotically nonflat black hole spacetimes. Some black holes as lens are considered
such as a static and spherically symmetric black hole in the conformal Weyl gravity and a Schwarzschild-
like black hole in bumblebee gravity. Our results are consistent with the previous literature. In particular, we
find that the connection between Gaussian curvature and the radius of a circular orbit greatly simplifies the

calculation.
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I. INTRODUCTION

In differential geometry, curvature is a core concept. For
Riemannian manifolds with dimensions greater than 2, its
information is described by the Riemann curvature tensor.
But in a two-dimensional manifold, the situation is simpler
because the Gaussian curvature (equivalently, scalar cur-
vature) already contains all the information [1]. On the
other hand, in general theory of relativity, gravity is not a
force, but a curvature of spacetime. Naturally, one would
hope that gravitational-related effects could be represented
by curvature.

Light deflection is one of the predictions of general
relativity, which has been verified by a series of experi-
ments [2,3]. Nowadays, the gravitational lensing has
become an important tool in astronomy and cosmology.
For example, it is used to measure the mass of galaxies and
clusters [4-6] to detect dark matter and dark energy [7-13].
For a light ray propagating through the equatorial plane,
how does the deflection angle be represented by the Gauss
curvature? In 2008, Gibbons and Werner applied the
Gauss-Bonnet (GB) theorem to study the weak gravita-
tional deflection angle of light in static and spherically
symmetric (SSS) gravitational field [14]. In their geometric
method, the deflection angle can be calculated by integrat-
ing the Gaussian curvature of corresponding optical metric.
The importance of the Gibbons-Werner method is that it
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shows that the deflection angle can be viewed as a global
effect. How to extend this geometrical method to the
stationary and axially symmetric (SAS) spacetimes? For
a stationary spacetime, the corresponding optical geometry
is defined by a Randers-Finsler metric. Bloomer [15] tried
early and was eventually established by Werner [16] using
Nazim’s osculating Riemannian manifold method [17].

With the Gibbons-Werner method, the weak gravitational
deflection of light by different lens objects in differential
gravity models has been widely studied in Refs. [18—41].
Furthermore, some authors used GB theorem to study the
deflection of massive particles [42—45]. Recently, a new step
forward was put by Ishihara et al. [46,47] extending the use
of the Gibbons-Werner method to more general situations
where the receiver and source are assumed to be at finite
distance from a lens. More, Ono et al. [48-51] introduced
the generalized optical metric method to study the finite-
distance deflection of light in SAS spacetimes. Very
recently, by using Jacobi-Maupertuis Randers-Finsler met-
ric and GB theorem, Li et al. studied the finite-distance
effects on gravitational deflection of massive particles in
SAS spacetimes [52-54].

Both in the case of finite-distance deflection and infinite-
distance deflection, the GB theorem is often applied to an
infinite region outside of the particle ray. However, it cannot
usually be applied to study of deflection angle in some
asymptotically nonflat spacetimes. Taking Schwarzschild-de
Sitter (ds) spacetime as an example, the terms containing the
cosmological constant are divergent as radial coordinate
approaches infinity. Arakida [55] first considered a finite
region and study the deflection angle of light in
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Schwarzschild-ds spacetime. Very recently, Takizawa et al.
[56] used nongeodesic circular orbits with a minimum
distance as radius to form two finite regions and studied
the deflection angle of light in asymptotically nonflat space-
times. However, in order to calculate the deflection angle, the
geodesic curvature of nongeodesic circular orbit needs to be
considered in Ref. [56]. The idea of this paper is to use a
geodesic circular orbit instead of a nongeodesic circular orbit
to avoid geodesic curvature terms in deflection angle. To this
end, we will first introduce a geometric approach to derive the
radius of circular orbit of particle in SSS spacetimes. Then,
we will apply the circular orbit and GB theorem to study the
weak deflection effects of particle.

This paper is organized as follows. In Sec. II, based on
Jacobi metric, we apply a geometric method to derive the
radius of circular orbit of particle moving in the equatorial
plane of SSS spacetimes. In Sec. III, we apply the circular
orbit of particle to study the weak gravitational deflection
angle. In Sec. IV, we calculate the weak deflection angle of
particle in two asymptotically nonflat spacetimes. Finally,
we end our paper with a short conclusion in Sec. V. We set
G = ¢ =1 in this paper.

II. CIRCULAR ORBITS OF A PARTICLE IN SSS
SPACETIMES: A JACOBI METRIC METHOD

A. Jacobi metric

The Jacobi metric of curved spacetime is an important
tool for studying gravitational effects. The Jacobi metric of
static spacetime is established by Gibbons [57], while the
Jacobi metric of stationary spacetimes is established by
Chanda et al. [58,59]. In this subsection, we briefly review
Jacobi metric of SSS spacetimes (see Refs. [45,57] for
details). For convenience, we use gij o denote Jacobi
metric and this is followed for the quantities with Jacobi
metric. For a SSS metric,

ds* = g, dx"dx"
= —A(r)dt* + B(r)dr* + C(r)dQ?, (1)
its Jacobi metric reads

dI* = g;;dx'dx/
B C
— (E2 = m2A) <A ar + AdQZ), 2)

where m and E denote the energy and mass of a particle,
respectively, and dQ? = d0? +sin?0d¢? is the line element
of unit two-spheres. The Jacobi metric reduces to optical
metric as m =0 and E =1,

B C
di*> = dr* = Zdﬂ + ngz. (3)

The energy of particle at infinity for an asymptotic
observer is

m
E =

-2 “)

where v is the velocity of particle. Without loss of

generality, we study the motion of particles in the equatorial
plane (@ = z/2). Then, the Jacobi metric becomes

dﬂ:mZ( 12—A><§dr2+§d¢2>. (5)

1—-w

The orbit equation of a particle moving in equatorial plane
can be written as [45]

2 4.4 1 1= 2 1
ﬂ :Cu 52— A 21;__ ) (6)
de¢ AB |b*v b=v C

where u = 1/r and b is the impact parameter. Let v = 1; it
leads to the orbit equation of light as follows:

G-Sbg o

B. The circular orbit of a particle
in equatorial plane

Suppose the circular orbit y., is defined by r = r., =
constant, then, by Eq. (5), we have

di> = mz[

(1 _ UZ)A(}"CO) - 1:| C(rco)d¢2' (8)

The geodesic curvature of curve y,, is [45]

K(Yeo) = \/W <Cjz_i)> 2

Let x(y.,) = 0, by metric (5), the radius of circular orbits
satisfies

©)

Ir=reo

O = C(rco)arA(rc) - A(rw)arc<r€0)
X [1 = A(re) + v?A(re,))]. (10)

One can see that this equation is independent in metric
function B(r). For light (v = 1), one can get

C(rcl))arA(rC()> _A<rc()>arc(r(f()) = 0' (11)
When C(r) = r?, this leads to
reo0,A(Teo) = 2A(rc,) = 0, (12)

which is consistent with Ref. [60].
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C. Example: Circular orbits of a particle
in Schwarzschild spacetime

For Schwarzschild black hole, one has

A(F) :1—27M,
5= (1-20)7,

C(r)=r.

Here and below, we use M to denote the mass of a certain
black hole. Substituting the above metric functions A(r)
and C(r) into Eq. (10), one can obtain the following
circular orbit radius:

(144 + V14 80P)M

rCO 21}2

(13)
For v = 1, it reduces to the radius of circular orbit of light

Fep = 3M. (14)

III. APPLICATION CIRCULAR ORBIT
TO WEAK GRAVITATIONAL LENSING

A. Gauss-Bonnet theorem

Let D be a compact oriented two-dimensional Remannian
manifold with Gaussian curvature /C and Euler characteristic
(D), and its boundary 9D is a piecewise smooth curve with
geodesic curvature k. Then GB theorem states that [14,61]

/[)ICdSqL?ngdavLZﬂi —2my(D),  (15)

where dS is the area element, do is the line element of
boundary, and f; is the jump angle in the ith vertex of 9D in
the positive sense, respectively.

B. Lens geometry

In this subsection, we will use the GB theorem to
study the gravitational deflection of particle. We apply
the definition of deflection angle proposed in Ref. [46],

a=¥, — Y5+ ¢gs, (16)

where W, and Wg are angles between the tangent of
the particle ray and the radial direction from the lens to
receiver and source, respectively, and the coordinate angle
¢rs = dr — s, presented in Fig. 1.

Now, we consider a region D C (M, g;;) bounded by
four geodesics: a particle ray y, from source (S) to receiver
(R), particle circular orbit y.,, two spatial geodesics of
outgoing radial lines passing through R and S, respectively.
Due to the fact that D is a nonsingular region, one can

S

FIG. 1. A region D C (M, g;;). Notice that fr = 7 — ¥y and
Ps = ¥s.

see y(D,)=1. In addition, the circular orbit y,, is
perpendicular to the radial lines. Considering the above
facts, applying GB theorem to region D, we can get

/LICdS+ﬁ5+ﬁR—7z. (17)

Using the definition (16), considering fr = 7 — ¥y and
ps = W, we can obtain the deflection angle as follows:

o« = //DICdS+¢Rs- (18)

The expression of deflection angle (18) is applicable to
asymptotically nonflat spacetime, and it also applies to
study the finite-distance effects. More, it is more concise
than in Ref. [56]. However, it should be noted that the
formula (18) is only applicable to the case where circular
orbits of particle exists in spacetime. Finally, the Gaussian
curvature of Jacobi metric can be calculated as [16]

o(Votrs) (e
o [ o)

C. The integration of Gaussian curvature

From optical metric (3), we can get

1/C A
o =—(=-=),
L) (c A)
where ' denotes derivative with respect to r.
Then, by Eq. (19), we have

) (o)
Jdetgdr — — g,

Vdetg
grr

_ CA' - AC 20)
~ 24VBC

$
r,
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Note that we ignore the constant of integration here, which
has no effect on the study in this paper. Then, according to
Eq. (11), we have

U K@dr} =0. (21)

r=Trco

Although we only discuss optical metrics, it is not hard to
believe that this property holds true for the Jacobi metric.
Equation (21) can greatly simplify the calculation of the
deflection angle, because it can reduce Eq. (18) to

dr [r(¢)
a—/ R/ K+/detgdrdp + ¢rs
S I

co

= /¢R [/ K«/detgdr] dp + drs.  (22)
bs r=r(¢)

In the next section, we will use Eq. (18) to calculate the
deflection angles of light and massive particles in asymp-
totically nonflat spacetimes.

IV. EXAMPLES IN ASYMPTOTICALLY
NON-FLAT SPACETIMES

In this section, we give two examples as applications of
Eq. (18). In the first example, we study the deflection angle
of light in a SSS spacetime in Weyl gravity model, and we
need to use optical metrics as the background space. In the
second example, we study the deflection angle of particles
in Schwarzschild-like spacetime in bumblebee gravity
model, using the Jacobi metric as the background space.

A. Deflection angle of light in a static
and spherically symmetric spacetime
in the conformal Weyl gravity

The line element of a static and spherically symmetric
spacetime in the conformal Weyl gravity reads [62]

2M
ds* = —(1 —3My——+yr—kr2>dt2
r

2M -1
+<1—3My—+yr—kr2> dr?
r
+ r2(d6? + sin®0d¢?), (23)
where y and k are the constants. For simplify, we choose

k = 0. Substituting metric (23) into Eq. (11), one can
obtain the radius of circular orbits of light as follows:

=1 43My+ /1 +9M%? (24)
. )

co

Using Eq. (7), we can obtain the orbit equation of light in
this spacetime,

du 2 1 2 3 2
@) “p +2Mu® —uy +3Mu?y.  (25)

We can get its solution by iterative method as follows:

: 2
u2511;¢+(1+01(7); ¢)M—g+O(M2,y2), (26)

which can derive the coordinate angles as

. (2 - b*ul)M by
= arcsin(bug) —
’s (bus) 1 —b*ug 1 - b*u3
b3udyM
TS )+ O(M2. ). (27)

2(1 = b*uz)/?

) (2 - b*uz)M
¢r = n — arcsin(bug) + ————
. (bu) + e

by b uyyM

_|_
2/ T=0%u%  2(1 = bPup)?

+ O(M?,y?). (28)

In addition, the corresponding optical metric of metric
(23) is

dr? r2d¢2

df* = , (29
1-3My -2 yr)2  1-3My—2M 4 yr (29)
( y=="+r y—=r+r
with Gaussian curvature
2 243 M 3(1+2ry)M?

4 r r

Thus, we have

e [r@®)
/ / Kds = / ! / KC\/detgdrdg
D bs T

co

/¢R {6M(1+r}/)—r(2+r}/)] di
ds L2py/1=3My—24
S

_ / . (—1 +72Mzin¢+(9(M2,y2)>d¢

2M -
_ (COS¢Z COS¢R)—¢R5+O(M2’72)’ (31)

N

where we used Eq. (26) and r = 1/u.
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Finally, the deflection angle becomes

(X:/ ’CdS+¢RS
D

~ 2M(cos ¢ — cos ¢g)
B b

M(\/1 - b*u}

b

+O(M?,y?)

+4/1-

Ug
(\/1 b2u’ \/1 - b2u§>

+O(M2. %), (32)

where we used Eqgs. (27) and (28). This result is the same as
that calculated by a =Y, — W + ¢rs in Ref. [46] and

calculated by a= [Jp, p KdS+ [5°k,dl+ dgs in Ref. [S6].

B. Deflection angle of massive particle
in Schwarzschild-like spacetime
in bumblebee gravity

The Schwarzschild-like black hole in bumblebee gravity
model is given as [63]

2M 27
dS (1—T>dt2 (I_Z_M)drz

r

+ 12(d6? + sin*0dg?), (33)

where 1 =+/1+1 with [ being the Lorentz violation
parameter. From this, one can see that 4 is only included
in the metric function B(r). Therefore, the particle circular
orbit is the same as in the case of Schwarzschild black hole,

(=1 + 40> + V1 +8*)M

Feo = 2,2

(34)
The orbit equation is

(38)

2Mu(1 — v + b*u*v?)
N e

w? /1 5
+ﬂ_2 ﬁ—u

with its iterative solution

> + O(M?), (35)

(P 2 209
sin( -5 1 —+ v°cos“ (% M
(,1) ( (,1))

b b2

+0(M?).  (36)
As well, we have

(14 v* = b*u3v*)MA
by/1 = b*u3v?

+ Aarcsin(bug) + O(M?), (37)

bs = -

(1 + 2% = b*ukv*)MA

Ir = by/1 = b*ukv?
+ A(m — arcsin(bug)) + O(M?), (38)
brs = Pr — s

— arcsin(bug)]

Y
bo* \\/1 =023 /1 - b}
+M7/1(\/1—b2u%+\/1—b2u§). (39)

Now, we write the corresponding Jacobi metric as follows:

v? oM A2dr? rdg?
dzzzmz(l_vz _) [(1 | +1_M} (40)

I3

= A[z — arcsin(bug)

One can obtain its Gaussian curvature by Eq. (19),

B M(1—1?)
k= m*r3[rv? + 2M(1 — v?)]32%
x [8M3(1 = v?)? = P2 (1 + v?) = 3M 2% (1 — 20?)
—6M?r(1 — 30 4 20%)]. (41)

Then, one can obtain the integral of Gaussian curvature
as follows:

//j eds — (1 + v*)M[cos(Ls) — cos(Lx)]

bv?
- % + O(M?), (42)

where we used Eq. (36). Finally, the deflection angle is

a= [ Kds+ bus

v cos(£s) — cos (e
RUSLTET L, (1-D) e 00
= (A—1)[z —arcsin(bug) — arcsin(buy)]
- [(1 +02)A=buz(1+0%2)
+(1+v )ilf\/T(éH—v l)}bz_’_O(Mz) (43)

where we used Eqgs. (37)-(39). As well, let ug — 0, and
ur — 0 the infinite-distance deflection angle can be
obtained as

2(1 4 v2)AM

=(1-1
Ao ( >”+ va

+OM?).  (44)
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Equations (43) and (44) agree with that calculated by
a = [feaekdS + [§ kydo + (1 =3)¢gs in Ref. [52].

V. CONCLUSION

In this paper, we have introduced a geometrical method
to study the circular orbit of a particle moving in SSS
spacetimes. On the other hand, we used the circular orbit to
investigate the weak gravitational deflection of null and
timelike particles. By applying the GB theorem to a finite
area surrounded by four geodesics such as partial particle
circular orbit, we obtain a new expression of deflection
angle as follows:

a://DICdS+¢RS.

This formula is suitable for studying the finite-distance
effect of deflection angles, and also for weak gravitational

deflection of particle in asymptotically nonflat spacetimes.
In particular, we show that

o

=Tco

where we ignore the constant of integration. It is very
beautiful, and in practice, it can simplify the calculation of
the deflection angle. In addition, we apply our proposed
formula to calculate the weak gravitational deflections of
light in an SSS spacetime in Weyl gravity and the deflection
of massive in a Schwarzschild-like spacetime in bumblebee
gravity, respectively, and the results are consistent with the
previous literature. Finally, it will be our future work to
extend present method to stationary spacetimes.
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