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We report the effect of the cosmological constant and the internal energy density of a cosmic string on
the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first
revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic
equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when
employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration
domain for the global conical topology, we resolve the inconsistency between these two methods
previously reported in the literature. We show that the deflection angle is not affected by the rotation of
the cosmic string; however, the cosmological constant A strongly affects the deflection angle, which

generalizes the well-known result.
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I. INTRODUCTION

The detection of gravitational waves from black holes
and neutron star mergers ushers in an age of multimes-
senger astronomy [1,2]. Another physically interesting tool
of general relativity is gravitational lensing, the slight
warping of light from distant galaxies under the influence
of a massive object, such as a planet, a black hole, or dark
matter. Recently, weak gravitational lensing (WGL) has
been used to detect dark matter filaments connecting
individual massive clusters, creating a composite image
of the bridge and contributing to our understanding of the
large-scale structure in the Universe [3]. Moreover, WGL
has also been used to observe the cosmological weak
lensing effect on temperature fluctuations in the cosmic
microwave background and to create sky maps of what
could be called “the index of refraction of the entire visible
Universe” [4-9].

Here, we improve the weak deflection limit analysis of
rotating cosmic strings with a cosmological constant [10].
In seminal papers by Vilenkin [11] and Gott [12], the
deflection angle in the gravitational field of a static,
cylindrically symmetric string has been investigated using
a linear approximation to general relativity. Cosmic strings
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are topologically stable objects that may have been formed
during the U(1) symmetry-breaking phase transition in
the early Universe when the Universe had cooled down to
a certain critical value [13]. Recent studies show that the
stochastic background of gravitational waves produced by
a network of cosmic strings could be detected by Laser
Interferometer Gravitational-Wave Observatory or future
facilities, such as Laser Interferometer Space Antenna
[14-35]. This will provide evidence for cosmic strings
fingerprints in the near future.

Alternatively, gravitational lensing may enable the
measurement of cosmic strings. Toward this purpose, in
this article, we use the Gauss-Bonnet theorem (GBT)
applied to the optical geometry, integrating the Gaussian
curvature of the optical metric outward from the light ray
[36-38] and calculating the light deflection by cosmic
strings [39]. This method has been used in many different
spacetimes [40-51]. It has been shown that the deflection
of light by a rotating cosmic string is affected by a term
that is proportional to the rotational cosmic string param-
eter, a = 4J, and the linear mass density of the cosmic
string, u, given by & = 3zwau/2b [41,44]. In Ref. [44],
it is argued that one can neglect this term since a contains
the linear mass density of the string per unit length,
and hence this term is proportional to u?; the agreement
between the GBT and the geodesic method breaks down
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in the above-mentioned papers. In principle, this problem
should be resolvable properly since the geodesic equation
method shows that the deflection angle is not affected by
the rotation of the cosmic string.

Here, we aim to extend the GBT method to include the
second-order terms in u. We shall argue that the above-
mentioned disagreement is due to the straight-line approxi-
mation used in the papers. We show that the problem can be
resolved by modifying the integration domain for the global
conical topology.

Finally, we try to reveal the effect of the cosmological
constant on the deflection of light in the cosmic string
spacetime. Recently, many researchers have shown that
there is an effect of the cosmological constant on deflection
angles in the context of black holes [52—-56]. Whether the
cosmological constant has an effect on the deflection angle
is an open question. For this purpose, we study the effect of
the cosmological constant on light deflection in relation to
the internal structure of the string.

II. DEFLECTION ANGLE USING
GEODESIC EQUATIONS

The metric for a cosmic strings with an internal structure
filled with matter and vacuum energy can be written as [10]

ds? = —dr* + dp? + n?p*de? + dz2, (1)

where n = 1-4ul, and £ ="~ °/+A Note that u is the linear
mass density and p, is the internal energy density of the
cosmic string. Introducing a rotation d¢f — dz + adg, with
a = 4J, and passing into spherical coordinates yields

ds? = —(dt+ ad@)? +dr? + r*d@* + p*r’sin’0de*.  (2)

Using the Euler-Lagrange equations, one can evaluate
two conserved conjugate momenta in geodesic motion
when both the observer and the source lie in the equatorial
plane,

Po =55 = —(t+ap)a+nPr(s)’o=H  (3)

oL

pi= 5 = ~lap+ B = ¢, )

where £ is the energy at infinity and H is the angular
momentum. We define the angle ¢ to be measured from the
point of closest approach, i.e., uy,x = 1/b [note that
r = 1/u(g)]. Setting the affine parameter along light rays
to unity, i.e., £ =1, and setting H = nb leads to the
following geodesics equation:

1 (du)2 1 (p* = a*u® — nbu*a)?
i \dp) T2 72

dg 2 2 u*(a+nb)?
T
u”(a +nb) 2

Solving the last equation for ¢, we obtain

1/b nb+a

Q= du. (6)

0 \/772 — a*u? = 2anbu* — y*a*u?

Taking a series expansion around y and a in the integrand,
one finds that the integral becomes singular at © = 0 and
u=1/b, given as

b
— u

+ “other terms.” (7)

Hence, the idea is to assign a value to this divergent
integral at these singular points. To overcome this issue and
to make the result finite, we simply assign a value to the last
expression by taking the limit at the singular points and
making use of the relation & = 2|@,_i/, — @,—0| —7
In particular, the deflection angle is found to be

A A2
a:4zw(”°+ >+167w2(’i> oo (8)
Po Po

In the special case in which the cosmological constant
vanishes, i.e., A=0, we find =14y, and a=
4mp + 16mu*> + - --. For a typical ground unified value,
we take p ~ 107°.

III. DEFLECTION ANGLE USING THE
GAUSS-BONNET THEOREM

It is straightforward to show that the optical metric of the
rotating cosmic string spacetime (2) is given by a Finslerian
optical metric, also known as a Randers metric [57], with
a corresponding Hessian of the form (see, for example,
Ref. [38])

107 F%(x,v)

gij(x,v) = 2 ovow )

It is well known that the Randers metric [57] can be written

as F(x,v) = \/a;;(x)v'v/ + p;(x)v’, with a;; and f; sat-

isfying a”/f;; < 1. Once we find the Randers metric, we
need to apply the so-called Nazim construction to find the
Riemannian manifold (M, g), which osculates relative to
the Randers-cosmic string metric (M, F). One can do this
by simply choosing a smooth and nonzero vector field ¥
with the Hessian g,;(x) = g;;(x, 9(x)). Note that the choice
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of vector field is not unique; for the purpose of our problem,
we shall take 7" = —cos ¢ and 7¥ = sin® ¢/b.

We can now proceed to apply the GBT. For simplicity, we
choose the origin of our coordinate system perpendicular to
the cosmic string. Further, we need to chose a domain of
integration, Dy, a region in the equatorial plane of the
osculating Riemannian manifold bounded by the light ray y;,
ata distance b from the cosmic string, and a circular segment
Cy of radius R (i.e., 0Dg = y; U Cg) [38]. The GBT can
then be stated as

[ kas w30 = 20, G0

where K is the Gaussian optical curvature and «x is the
geodesic curvature defined as k = |V, | [40]. In the limit as
R goes to infinity, the geodesics curvature reduces to a simple
form:

. } a
I}EIOlOK(CR)dI = 1%1_{1010 <n - E) = nde. (11)

Clearly, when u = A =0, yielding n — 1, we obtain
the asymptotically Euclidean case, i.e., k(Cg)dt/dp = 1.
The deflection angle in the form of the GBT becomes

The determinant of the metric, neglecting higher-order terms
of the angular momentum parameter a, can be written as

(sin*@n?r? + cos?pb?)

2 r2?sint gy 3/2
b*(cos?p + “50)

detg = P — 3asin®pn?r?

(14)

Note that the components of the optical metric of the rotating
cosmic string are

6,22
Gr=1-—— L 0@), (15)
b (cos? (p—l—”“““/’)
PR asin? pr*(2r’ny? sin* @ + 3b* cos? ¢)n?
(4 b (COS o+ r? 17 sm (/))3/2

(16)

_ acos® ¢ 5
Gre = + O(a?). (17)

b (cos® ¢ + ”7 sin’ )%/2

The Gaussian curvature is

I {a (Jde—tgf;pr)_Q(\/‘erwﬂ (18)

VAN or\ gy
=7—-- / / K+/detgdrde, (12)  so,using the Christoffel symbols and the metric components,
we obtain
where
12a
| KI—Tf(’”»q)»’?)’ (19)
I:ﬂ<—1>. (13)
n with
J
sin’g sinlpn®r  b*r?sin’ep  rPr*cos’pb®(* + 27)sin’ ¢
f(r7 ®, l’l) 7/2 - + + ( )
(cos?p + r 11 Sm rsintey7/2 7 24 8 24
3b3rPn*cos’psin®y (5 rnPcosty  cosPpbtr\ . 5 3ribPncostesinte
- + - sin” ¢ —
4 4 2 2
N 17r(n* = B)cos*pb*sin’ep  cos*psin®pb’ _ 5b*rsin gcos®y + beost) . (20)
24 2 4
I
The deflection angle (12) becomes Differentiating this equation, we end up with
12a d2
= —/ / (—fr(pn)\/det gdrde. d—q)zu((p)-l-ﬂzu((ﬂ)zo- (23)
(21) Solving this equation, one finds
We then linearize Eq. (5) around a: u(p) = C, sin (ng) + C, cos (ng). (24)
2 2 2 2
<d_”> % + '7_2 _ '72 2+ % —=0. (22) We make use of the following initial conditions:
dp/ 2u*  2u” 2b°u®  u'b u(p =0) =0 and u(p = z/2) = 1/b. It follows that
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= . 25
We can approximate this equation as

uf) =) (26)

since sin(%7) ~ 1. Finally, in terms of the radial coordinate
r, we find

1 b b
r(e) = u(p) " sin (np) ~ sin [(1=4ul)g] 27

Taking this result into the consideration, we can find no
contribution from the rotating cosmic string parameter to
the deflection angle:

V3 0 12
/ / 22 (v o) /detgdrdp = 0. (28)
0 Jartamg T

sin [(1-4ul)ep

As we can see from the last equation, this simple
modification of the integration domain resolves the incon-
sistency between GBT and the geodesic methods reported
in Refs. [41,44]. On the other hand, going back to Eq. (13),
we find

I:;T(] _14%— 1> (29)

by expanding

1_4ﬂ§:1+4ﬂc+~-, (30)

provided 4u{ < 1. Otherwise, in the case 4ul > 1, the
series diverges. Hence, the total deflection angle in our
case is

A A2
&—47t,u<p0+ )+16nﬂ2<ﬂ) +o. o (31)
Po Po

We have shown that the total deflection angle is corrected
and the effect of the cosmological constant has been
included.

IV. CONCLUSIONS

In summary, we have studied the WGL of rotating
cosmic strings using the GBT and geodesics. Although
cosmic strings have been known for over 40 years, they
have never been observed. We have provided a detailed
analysis of the influence of the cosmological constant and
cosmic string parameters on the deflection angle; we have
shown that, by carefully choosing the domain of integra-
tion, a generalized deflection angle containing higher-order
terms in the linear mass density can be obtained. When the
cosmological constant A vanishes, we obtain the well-
known deflection angle of rotating cosmic strings.

Clearly, the deflection angle with the effect of the
cosmological constant contains a clue regarding dark
energy. The main message of this article is that, besides
the effect of linear mass density on the deflection angle, the
deflection angle is also affected by the internal structure of
the string (such as the vacuum energy, as given by the
cosmological constant). On the other hand, we have shown
that there is no contribution from the rotation of the cosmic
string, when higher-order terms in u are included. The
effect is larger as a result of the cosmological constant A
and energy density pg, which might play an important role
at astrophysical scales. These results provide an excellent
opportunity to observe cosmic strings by WGL and to
determine the nature of these exotic objects. Hence,
gravitational lensing can provide some clues towards the
direct detection of the nature of the cosmological constant
and cosmic strings.
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