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In this paper, we are interested in a model of exact asymptotically flat charged hairy black holes in the
background of a dilaton potential. We study the weak gravitational lensing in the spacetime of a hairy black
hole in the Einstein-Maxwell theory with a nonminimally coupled dilaton and its nontrivial potential. In
doing so, we use the optical geometry of the flat charged hairy black hole for some range of parameter γ.
For this purpose, by using the Gauss-Bonnet theorem, we obtain the deflection angle of the photon in a
spherically symmetric and asymptotically flat spacetime. Moreover, we also investigate the impact of the
plasma medium on weak gravitational lensing by an asymptotically flat charged hairy black hole with a
dilaton potential. Our analyses show the effect of the hair on the deflection angle in weak-field limits.
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I. INTRODUCTION

At the darkest points in the Universe, their boundaries
perilous and invisible, space warps. The singularity con-
stitutes the center of a black hole and is hidden by the
object’s surface, the event horizon. A black hole is a
location in space that possesses so much gravity that
nothing can escape its pull, even light. It is said that fact
is sometimes stranger than fiction, and nowhere is this more
true than in the case of black holes. Since the first image of
a black hole by the Event Horizon Telescope [1], physicists
now try to take even sharper images so that Einstein’s
theory of general relativity can be tested and also to see
the properties of the black holes [2–10], because there
are many theoretically obtained black hole solutions with
different properties.
According to Einstein, a black hole (BH) can be

described only in terms of its mass and spin, which is
known as “no-hair” theorem. No hair means that informa-
tion about the physical state of matter must be lost as the
matter is sucked into a BH; otherwise, this information
would distinguish one BH from another. In 1974, Hawking
made the landmark conjecture that BHs do not simply suck
in everything but rather behave as blackbodies that emit
radiation as well as absorbing it [11]. He calculated the
blackbody temperature of a BH known as the Hawking
temperature. Having a distinct temperature implies that a

BH has entropy, which Hawking also calculated. Entropy is
a measure of the number of different ways the microscopic
constituents of a BH can arrange themselves. This goes
against the no-hair theorem, which says that a BH can be
arranged only in one way as defined by its mass and spin.
Recently, Hawking with his colleagues suggested that
information-preserving massless particles known as soft
hair could surround BHs. They have calculated the entropy
of a BH that has a certain kind of soft hair, which leads to
Hawking’s original calculation of BH entropy [12].
The Einstein-Maxwell-dilaton (EMD) theory is an

arousing and highly motivated theory to examine the effect
of new essential degrees of freedom in order to prove the
no-hair theorem because of the existence of hairy BH
solutions in contact with the vector, scalar, and tensor
spectrums. It is to be observed that, in the background of
asymptotically anti–de Sitter (AdS) geometries, there must
exist exact scalar-hairy BH solutions with respect to
specific scalar potentials [13,14].
At the back of the no-hair conjecture, the simplest

physical visualization is the following: After the gravita-
tional collapse, the matter fields left over in the exterior
region would finally be immersed by the BH itself or be
radiated off to infinity. Although the hair of a BH is located
at the outer side of event horizon, the question then arises of
how there exists a possibility that the matter can hover in an
immense gravitational field without collapsing entirely.
Intuitively, the response to the question could be that this is
possible if the internal pressure is large up to a sufficient
degree. On the other hand, such a type of intuition does
work only close to the event horizon, and it must be noted
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that the nonlinear interaction of matter fields provides the
basis of the existence of hairy BHs [15].
A geometric spontaneous scalarization phenomenon has

recently been examined [16–20]. It is noted that, in
gravitational field and matter models, where a real or
scalar field couples minimally to the curvature squared
Gauss-Bonnet (GB) combination under particular options
of the coupling function, there exist two possibilities of
solutions. The standard vacuum BH solutions (bald) of
general relativity (GR) and very recent “hairy” BH sol-
utions with a scalar field characterization, both types of
solutions deceiving the no-scalar hair conjecture.
Moreover, it is suggested that the hairy BHs could form
by means of spontaneous scalarization, since the standard
vacuum BH solutions were shown to be perturbatively
unstable. Following the previous analysis, Herdeiro and
Radu [21,22] have examined the basics of the spontaneous
scalarization phenomenon for BHs. They have elaborated
this phenomenon within the quantum framework by giving
two examples of spherically symmetric static asymptoti-
cally flat BHs in the effective field theory. One of the
examples is that the trace anomaly occurs in the matter
sector and provides a generalized form of the Reissner-
Nordström BH solution incorporating F4 correction,
while, in the second case, it arises from the geometry
sector and provides geometrically a noncommutative gen-
eralized Schwarzschild BH. In comparison, they have also
discussed the scalarization phenomenon of Einstein-
Maxwell-dilaton BHs. Because of a nonminimal coupling,
they have investigated the connection of the scalarization
mechanism with the quantum instabilities [23].
An important fundamental predication of GR is the

phenomenon of gravitational lensing, which is the deflec-
tion of light in the presence of gravitational fields of
compact objects. Solender (1801) proposed the gravita-
tional lensing due to the Sun in the background of Newton’s
theory, while the absolute value of deflection angle δ ¼
4 M⊙=R⊙ ≃ 1.75 arc sec was obtained in the background
of GR by Chowlson (1929) and Einstein (1936). In depth,
the study of gravitational lensing of compact objects
initiated with the learning of facts of the double quasar
Q0957þ 561 having redshift Z ¼ 0.39 (Young et al.
1980) [24–26]. They focused on the effects of the weak
gravitational lensing, i.e., the lensing for which the deflec-
tion angle is very small, equal to a few arc seconds.
Generally, there exists a differentiation between lensing on
noncosmological as well as on cosmological distances.
Moreover, the assumption of luminosity distances which
are model dependent leads us to the opportunity to examine
the mass distribution of dark matter halos, in particular, the
inner density slopes [27–29]. Schunck, Fuchs, and Mielke
[30] have investigated the deflection angle of a spherically
symmetric halo built from a precisely solvable scalar
field model incorporating Emden-type self-interaction.
They have examined the gravitational lensing impact by

considering a bosonic configuration and obtained the
normalized projected mass as well as the corrections with
respect to the pressure and analyze the weak-field dimen-
sionless lens equation.
In this paper, we try to understand the effect of the hair

on deflection angle by asymptotically flat black holes in the
EMD theory, which is derived from a string theory at low-
energy limits [31]. The EMD black holes have scalar hair,
in addition to mass, rotation, and charge, so that they offer
fascinating theoretical black hole models to check exper-
imentally in black hole experiments and investigate pos-
sible differences between Einstein gravity and modified
gravity theories [31–33].
Furthermore, let us now briefly review the Gauss-Bonnet

theorem (GBT), which connects the topological surfaces.
First, using Euler characteristic χ and a Riemannian metric
g, one can choose the subset oriented surface domain as
ðD; χ; gÞ to find the Gaussian curvature K. Then the Gauss-
Bonnet theorem is defined as follows [34]:

Z Z
D
KdSþ

I
∂D

κdtþ
X
i

θi ¼ 2πχðDÞ; ð1Þ

where κ is the geodesic curvature for ∂D∶ftg → D and θi is
the exterior angle with the ith vertex. Following this
approach, global symmetric lenses are considered to be
Riemannian metric manifolds, which are geodesic spatial
light rays. In optical geometry, we calculate the Gaussian
optical curvature K to find the asymptotic bending angle
which can be calculated as follows [34]:

α̂ ¼ −
Z Z

D∞

KdS: ð2Þ

Note that this equation is an exact result for the deflection
angle. In this equation, we integrate over an infinite region
of the surface D∞ which is bounded by the light ray.
By assumption, one can use the above relation only for
asymptotically Euclidean optical metrics. Therefore, it will
be interesting to see the form of the deflection angle in the
case of nonasymptotically Euclidean metrics. This method
has been applied in various papers for different types of
spacetimes [35–63].
This paper is organized as follows: In Sec. II, we review

some basic concepts about an asymptotically flat hairy BH.
In Sec. III, we compute the Gaussian optical curvature for
the deflection angle, calculate the deflection angle by using
the GBT for γ ¼ 1, and also find the deflection angle in a
plasma medium. In Sec. IV, we calculate the deflection
angle for γ ¼ ffiffiffi

3
p

and also find the deflection angle in a
plasma medium. The last section comprises concluding
remarks and results obtained from graphical analysis.
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II. ASYMPTOTICALLY FLAT BLACK HOLES IN
EINSTEIN-MAXWELL-DILATON THEORY

In this section, we briefly review the asymptotically flat
hairy BH in the EMD theory in the background of a dilaton
potential. We consider the following action of the Einstein-
Maxwell-dilaton theory [31,32]:

I½gμν;Aμ;ϕ�¼
1

2k

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R−eγφF2−

1

2
ð∂φÞ2−VðφÞ

�
;

ð3Þ

where

F2 ¼ FμνFμν; ð∂φÞ2 ¼ ∂μφ∂μφ; ð4Þ

VðφÞ is the dilaton potential, and c ¼ GN ¼ 4πϵ0 ¼ 1 by
using the convention k ¼ 8π. The equations of motion for
the gauge field, dilaton, and metric are, respectively, the
following:

Rμν −
1

2
gμνR ¼ Tφ

μν þ TEM; ð5Þ

∂μð
ffiffiffiffiffiffi
−g

p
eγφFμνÞ ¼ 0; ð6Þ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφÞ ¼

dVðφÞ
dφ

þ γeγϕF2; ð7Þ

where the stress tensors of matter fields are defined as

Tφ
μν ≡ 1

2
∂μϕ∂νφ −

1

2
gμν

�
1

2
ð∂ϕÞ2 þ VðϕÞ

�
; ð8Þ

TEM
μν ≡ 2eγφ

�
FμαFα

ν −
1

4
gμνF2

�
: ð9Þ

For exact regular hairy BH solutions, for a general scalar
potential there is a new method in a number of papers [33],
by using a specific ansatz. For flat spacetime, we should
apply the similar special ansatz for the metric and dilaton.
For the sake of simplicity, we are going to focus on two
particular cases for which the exponent coefficient of the
dilaton coupling with the gauge field takes the values γ ¼ 1

and γ ¼ ffiffiffi
3

p
, but for a more general solution there exists

Ref. [32].

III. WEAK DEFLECTION ANGLE OF
CALCULATION OF PHOTON LENSING

FOR γ = 1 BY GAUSS-BONNET THEOREM

For this solution, we consider the following scalar field
potential:

VðφÞ ¼ 2αð2φþ φ coshφ − 3 sinhφÞ; ð10Þ

where α is an arbitrary parameter. For γ ¼ 1, the static hairy
BH metric and gauge field yields that

ds2 ¼ ΩðxÞ
�
−fðxÞdt2 þ η2dx2

x2fðxÞ þ dΣ2

�
;

F ¼ 1

2
Fμνdxμ ∧ dxν ¼ qe−ϕ

x
dt ∧ dx; ð11Þ

where η and q are defined as independent parameters of the
solution and correspond to the mass and charge, respec-
tively, of this BH. dΣ2 ¼ dθ2 þ sin2θdϕ2 is spherical line
element, and the coordinate x is restricted to be positive:
x ∈ ½0;∞Þ. We can suppose that η > 0. One can use the
conformal factor as follows:

ΩðxÞ ¼ x
η2ðx − 1Þ2 ð12Þ

and then check that the equations of motion are satisfied for
the following spacetime metric function:

fðxÞ¼ α

�
x2−1

2x
− lnðxÞ

�
þη2ðx−1Þ2

x

�
1−

2q2ðx−1Þ
x

�
:

ð13Þ

It is appropriate to first find the black hole optical metric
by imposing the null condition ds2 ¼ 0 and solving the
spacetime metric for dt and also set the metric into
equatorial plane with θ ¼ π

2
, which yields

dt2 ¼ η2

x2fðxÞ2 dx
2 þ 1

fðxÞ dφ
2: ð14Þ

The optical geometry is in two dimensions and is obtained
for a thermodynamically stable asymptotically flat hairy
BH with a dilaton potential as follows [34]. By using the
Gauss-Bonnet theorem, initially we find the Gaussian
curvature K of the optical spacetime, as

K ¼ RicciScalar

2
; ð15Þ

K≈−η2x−
η2

x
þ1=4

η2

x2
þ3=2η2þ1=4x2η2

−1=2xα lnðxÞ−1=2
α lnðxÞ

x
þ1=4αx2−1=4

α

x2
−x2η2q2

þ5η2q2x−11
η2q2

x2
þ16

η2q2

x
þ3

η2q2

x3
−12η2q2

þ5
αq2

x
−3=2

αq2

x3
−4

αq2 lnðxÞ
x2

þ3
αq2 lnðxÞ

x
þxα lnðxÞq2−3αq2−1=2x2αq2

þ1=2xαq2−1=2
αq2

x2
: ð16Þ
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For multiple images, we use the global theory (Gauss-
Bonnet theorem) to relate with the local feature of the
spacetime such that there is Gaussian optical curvature.
The above equation will be apply to calculate the

deflection angle by taking a nonsingular domain SR outside
of the light ray (along with boundaries ∂SR ¼ γg ∪ CR)
with Euler characteristic χðSRÞ, Gaussian curvature K,
geodesic curvature k, and exterior jump angles αi ¼
ðαO; αSÞ at the vertices:Z Z

SR

KdSþ
I
∂SR

kdtþ
X
j

αj ¼ 2πχðSRÞ; ð17Þ

at a weak limit approximation ðρ → ∞Þ, αO þ αS → π.
Then the GBT becomesZ Z

SR

KdSþ
I
Cr

kdt¼ρ→∞
Z Z

S∞

kdSþ
Z

πþΘ

0

dφ¼ π:

ð18Þ

Now, by the geodesic property, the geodesic curvature
vanishes, kðγgÞ ¼ 0, and we get

kðCRÞ ¼ j∇ _Cr
_Cr
j; ð19Þ

with Cr ≔ ρðφÞ ¼ r ¼ const. Then the GBT reduces

lim
R→∞

Z
πþΘ

0

�
kg

dσ
dφ

�����
CR

dφ ¼ π − lim
R→∞

Z Z
SR

KdS: ð20Þ

Now, for radial distance,

kðCRÞdt ¼ dφ: ð21Þ

Therefore,

lim
R→∞

kg
dσ
dφ

����
CR

¼ 1: ð22Þ

In the weak-field regions, the light ray follows a straight
line approximation, so that we can use the condition of
r ¼ b=sinφ at zero order:

Θ ¼ − lim
R→∞

Z
π

0

Z
R

b=sinφ
KdS; ð23Þ

where

KdS ≈ 1=4
η2

x2
þ 1=4

α

x2
−
η2q2

x2
− 1=2

αq2

x2
: ð24Þ

After simplification, we find the deflection angle of a
photon for an asymptotically flat hairy BH in leading-order
terms as

α̃ ≃ −1=2
η2

b
− 1=2

α

b
þ 2

η2q2

b
þ αq2

b
: ð25Þ

Therefore, we can say that the GBT provides a global as
well as a topological effect; this method is very useful for a
quantitative tool and can be applied in any asymptotically
flat metrics.

A. Photon lensing in a plasma medium

In this section, we analyze the effect of a plasma medium
on the photon lensing by an asymptotically hairy black
hole. The refractive index for a hairy black hole is as
follows [35]:

nðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω2
e

ω2
∞

�
xfðxÞ

η2ðx − 1Þ2
�s
; ð26Þ

then, the corresponding optical metric yields that

dσ̃2 ¼ goptjk dx
jdxk ¼ n2ðxÞ

fðxÞ
�

η2

x2fðxÞ dx
2 þ dφ2

�
: ð27Þ

The determinant of the above optical metric is

det goptxφ ¼ xfðxÞω4
e − 2η2ω2

∞ω
2
eðx − 1Þ2

η2ω4
∞xfðxÞ2ðx − 1Þ4 ; ð28Þ

where the metric function is given as

fðxÞ¼ α

�
x2−1

2x
− lnðxÞ

�
þη2ðx−1Þ2

x

�
1−

2q2ðx−1Þ
x

�
:

ð29Þ

Now, we have

dσ̃
dφ

¼ nðxÞ
�
α2x2

fðxÞ
�

1=2

; ð30Þ

hence, we get differently which goes to α:

lim
x→∞

kg
dσ̃
dφ

����
CR

¼ 1: ð31Þ

We use straight line approximation r ¼ b=sinφ, for the
limit x → ∞, and then the GBT stated as

lim
x→∞

Z
πþΘ

0

�
kg

dσ̃
dφ

�����
CR

dφ ¼ π − lim
x→∞

Z
π

0

Z
x

b= sinφ
KdS;

ð32Þ

where
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KdS¼−3=2
ωe

2η2q2

x2ω∞
2
−3=2

ωe
2αq2

x2ω∞
2
þ1=4

ωe
2η2

x2ω∞
2

þ3=8
ω∞

2α

x2ω∞
2
þ1=4

α

x2
þ1=4

η2

x2
−1=2

αq2

x2
−
η2q2

x2
:

ð33Þ

Note that we consider only the first-order terms. After
simplification, we obtain the deflection angle in weak-field
limits as follows:

α̃ ≃ 3
ωe

2η2q2

bω∞
2

þ 2
η2q2

b
þ 3

ωe
2αq2

bω∞
2
þ αq2

b
− 1=2

ωe
2η2

bω∞
2

− 1=2
η2

b
− 3=4

ωe
2α

bω∞
2
− 1=2

α

b
: ð34Þ

The above results show that the photon rays are moving in a
medium of homogeneous plasma.

IV. NEW ASYMPTOTICALLY FLAT BLACK
HOLES IN EINSTEIN-MAXWELL-DILATON

THEORY

In this section, we analyzed the exact asymptotically flat
charged hairy BHs in the background of a dilaton potential.
There exists literature related to this BH recently discussed
by Anabalon, Astefanesei, and Mann [32]. We are inter-
ested in an action of the Einstein-Maxwell-dilaton theory
(κ ¼ 8πGN):

I½gμν;Aμ;ϕ�

¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−

1

4
eγϕF2−

1

2
∂μϕ∂μϕ−VðϕÞ

�
; ð35Þ

where the gauge coupling and potential are functions of the
dilaton. The corresponding equations of motion are

∇μðeγϕFμνÞ ¼ 0; ð36Þ
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ −

∂V
∂ϕ −

1

4
γeγϕF2 ¼ 0; ð37Þ

Rμν −
1

2
gμνR ¼ 1

2
½Tϕ

μν þ TEM
μν �; ð38Þ

where Tϕ
μν and TEM

μν are the stress tensors of the matter fields
and represented as follows:

Tϕ
μν ¼ ∂μϕ∂νϕ − gμν

�
1

2
ð∂ϕÞ2 þ VðϕÞ

�
;

TEM
μν ¼ eγϕ

�
FμαF·α

ν −
1

4
gμνF2

�
: ð39Þ

Now, we consider only asymptotically flat solutions. To
implement this condition, we require

lim
x→1

ΩðxÞfðxÞ ¼ 1; ð40Þ

and, on this account, we fix f0 to obtain [32]

fðxÞ ¼ η2

ν

�
x2 þ 2x2−ν

ν − 2
−

ν

ν − 2

�
þ f1

�
xνþ2

νþ 2
− x2 þ x2−ν

2 − ν
þ ν2

ν2 − 4

�

þ Q2η2

ð1 − pÞν2
�

x3−pþν

3 − pþ ν
þ x3−p−ν

3 − p − ν
− 2

x3−p

3 − p
−

2ν2

ð3 − pÞð3 − pþ νÞð3 − p − νÞ
�

þ P2η4

ð1þ pÞν2
�

x3þpþν

3þ pþ ν
þ x3þp−ν

3þ p − ν
− 2

x3þp

3þ p
−

2ν2

ð3þ pÞð3þ pþ νÞð3þ p − νÞ
�
: ð41Þ

A. Solutions with a nontrivial dilaton potential (γ = 1)

For this solution, we consider the following scalar field
potential [32]:

ΩðxÞ ¼ x
η2ðx − 1Þ2 ; ϕðxÞ ¼ lnðxÞ; ð42Þ

ds2¼ΩðxÞ
�
−fðxÞdt2þ η2dx2

x2fðxÞþdθ2þ sin2θdφ2

�
: ð43Þ

Here we study only the γ ¼ 1 case, which is smoothly
connected with a solution of N ¼ 4 supergravity which
gives the solutions of the metric function as follows:

A ¼ Q
x
dtþ P cos θdφ; ð44Þ

VðϕÞ ¼ α½2ϕþ ϕ coshðϕÞ − 3 sinhðϕÞ�; ð45Þ

fðxÞ ¼ η2ðx − 1Þ2
x

þ
�
x
4
−

1

4x
−
1

2
lnðxÞ

�
α

þ η2ðx − 1Þ3
2x

ðη2P2 − x−1Q2Þ: ð46Þ

Note that the dilaton field is vanishing at the boundary x ¼ 1
and also the dilaton potential is vanishing when α ¼ 0. At
the boundary x ¼ 1, one can find an asymptotically flat
spacetime. After we make a change of coordinates using
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ΩðxÞ ¼ r2 þOðr−4Þ; ð47Þ

which is given for the x < 1 black holes by

x ¼ 1 −
1

ηr
þ 1

2η2r2
−

1

8η3r3
þ 1

27η5r5
; ð48Þ

the spacetime metric becomes asymptotically flat [32]:

gtt ¼ΩðxÞfðxÞ¼ 1−
αþ6η2ðη2P2−Q2Þ

12η3r
þOðr−2Þ; ð49Þ

g−1rr ¼ x2fðxÞ
η2ΩðxÞ

�
dr
dx

�
2

¼ 1−
αþ6η2ðη2P2−Q2Þ

12η3r
þOðr−2Þ:

ð50Þ

It is noted that the scalar field potential is regular
everywhere, except at the spacetime singularities.

V. DEFLECTION ANGLE OF PHOTONS BY
ASYMPTOTICALLY FLAT HAIRY BLACK HOLES
IN EINSTEIN-MAXWELL-DILATON THEORY

Initially, we find the Gaussian curvature K of the optical
spacetime, as

K ¼ RicciScalar

2
ð51Þ

and

K¼ð−6η4p2þ6Q2η2−αÞð−6η4p2þ6Q2η2þ16η3r−αÞ
192η6r4

:

ð52Þ

In weak-field limits,

K ¼ −
α

12η3r3
þ α2

192η6r4
þ ð−8η3rþ αÞp2

16η2r4

−
ð−8η3rþ αÞQ2

16η4r4
þOðQ3; p3Þ: ð53Þ

For multiple images, we use the global theory (Gauss-
Bonnet theorem) to relate with the local feature of the
spacetime such that there is Gaussian optical curvature.
In the weak-field regions, the light ray follows a straight

line approximation, so that we can use the condition of
r ¼ b=sinϕ at zero order:

α̃ ¼ − lim
R→∞

Z
π

0

Z
R

b=sinφ
KdS: ð54Þ

Now, by using Eq. (18), the deflection angle of a photon by
an exact asymptotically flat charged hairy black hole with a
dilaton potential in the weak-field limit is found as

α̃ ¼ 3Q2p2π

32b2
þ ηp2

b
−
Q2

bη
þ πQ2α

64b2η4
þ α

6bη3
þOðQ3; p3Þ:

ð55Þ

A. Deflection angle of photons in plasma medium
by asymptotically flat hairy black holes in

Einstein-Maxwell-dilaton theory

In this section, we analyze the effect of a plasma medium
on the photon lensing by an asymptotically hairy
black hole. The refractive index for hairy black hole is
as follows [35]:

nðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ωe
2

ω∞
2

�
xfðxÞ

η2ðx − 1Þ2
�s
; ð56Þ

then, the corresponding optical metric yields that

dσ̃2 ¼ goptjk dx
jdxk ¼ n2ðxÞ

fðxÞ
�

η2

x2fðxÞ dx
2 þ dφ2

�
: ð57Þ

The determinant of the above optical metric is

det goptxφ ¼ xfðxÞωe
4 − 2η2ω∞

2ωe
2ðx − 1Þ2

η2ω∞
4xfðxÞ2ðx − 1Þ4 : ð58Þ

Now, by using Eqs. (17) and (29), in the weak-field limit
the Gaussian optical curvature is stated as follows:

K¼−
ω∞

2ðωe
2−2ω∞

2ÞQ2

4r3ηðωe
2−ω∞

2Þ2 þω∞
2ð3Q2ωe

2ω∞
2þ3Q2ω∞

4þ2ηrωe
4−6ηrωe

2ω∞
2þ4ηrω∞

4Þp2

8r4ðωe
2−ω∞

2Þ3 þ αðΨÞω∞
2

48η4r5ðωe
2−ω∞

2Þ4 ;

ð59Þ

where

Ψ¼ 9Q2ηp2ωe
4ω∞

2þ9Q2ηp2ωe
2ω∞

4−3η2p2rωe
4ω∞

2

þ3η2p2rω∞
6þ3Q2rωe

4ω∞
2−3Q2rω∞

6þ2ηr2ωe
6

−8ηr2ωe
4ω∞

2þ10ηr2ωe
2ω∞

4−4ηr2ω∞
6: ð60Þ

Now, we have

dσ̃
dφ

¼ nðxÞ
�
α2x2

fðxÞ
�

1=2

; ð61Þ

hence, we get differently which goes to α:
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lim
x→∞

kg
dσ̃
dφ

����
CR

¼ α: ð62Þ

We use straight line approximation r ¼ b=sinφ, for the
limit x → ∞, and then the GBT is stated as

lim
x→∞

Z
πþα̃

0

�
kg

dσ̃
dφ

�����
CR

dφ¼ π− lim
x→∞

Z
π

0

Z
x

b=sinφ
KdS: ð63Þ

After simplification, we obtain

α̃¼ 21πQ2p2ωe
2

64ω∞
2b2

þ3Q2p2π

32b2
þηp2ωe

2

ω∞
2b

þηp2

b

−
7παp2ωe

2

128ω∞
2b2η2

−
παp2

64b2η2
−
Q2ωe

2

ω∞
2bη

−
Q2

bη
þ 7πQ2αωe

2

128ω∞
2η4b2

þ πQ2α

64b2η4
þ1=6

αωe
2

ω∞
2η3b

þ1=6
α

bη3
:

ð64Þ

The proposed deflection angle shows that the photon rays
are moving in a medium of homogeneous plasma.

VI. CONCLUSION

In this paper, we obtain the deflection angle of a photon
to the spherically symmetric and asymptotically flat space-
time of a hairy BH with an Einstein-Maxwell-dilaton
system in the weak-field limit. To this end, we set the
photon rays on the equatorial plane in the black hole
spacetime. For this purpose, we have used the GBT and
obtain the deflection angle of the photon by integrating a
domain outside the impact parameter. Moreover, we also
found the deflection angle of a photon by an asymptotically
flat hairy BH in a plasma medium. We examined that the
proposed deflection angle shows that gravitational lensing
can be affected from the hair of the black hole, and it is a
global effect as well as a valuable tool to study the nature of
singularities of black holes.
In our analysis, we obtain the deflection angle of a

photon to the spherically symmetric and asymptotically flat
spacetime of a hairy BH with an EMD system in the weak-
field limit by using the Gauss-Bonnet theorem. The
computed deflection angle defined by (55) is stated as
follows:

α̃¼ 3Q2p2π

32b2
þηp2

b
−
Q2

bη
þ πQ2α

64b2η4
þ α

6bη3
þOðQ3;p3Þ:

ð65Þ

It is noted that, for the selection of mass term η ¼ m,
p ¼ 2, in the absence of charge Q ¼ 0, and α ¼ 0, the
above equation reduces up to the first-order term of the
deflection angle for a Schwarzschild black hole [34]:

α̃ ≃
4m
b

; ð66Þ

where m is the black hole mass. The significance of the
obtained result in the weak-field approximation is that the
deflection of a light ray is evaluated by taking a domain
outside of the lensing region, which implies that the impact
of the gravitational lensing is a global effect in such a way
that there are multiple light rays converging between the
source and observer.
Furthermore, by considering the homogeneous plasma

medium, we evaluate the deflection angle of a photon given
by (64) for an asymptotically flat hairy BH, which is given
below:

α̃¼21πQ2p2ωe
2

64ω∞
2b2

þ3Q2p2π

32b2
þηp2ωe

2

ω∞
2b

þηp2

b
−

7παp2ωe
2

128ω∞
2b2η2

−
παp2

64b2η2
−
Q2ωe

2

ω∞
2bη

−
Q2

bη
þ 7πQ2αωe

2

128ω∞
2η4b2

þ πQ2α

64b2η4

þ1=6
αωe

2

ω∞
2η3b

þ1=6
α

bη3
: ð67Þ

The above equation can be expressed as

α̃ ¼
�
ηp2

b
þ 3Q2p2π

32b2
−

απp2

64b2η2
−
Q2

bη
þ αQ2π

64b2η4
þ α

6bη3

�

þ
�
ωe

ω∞

�
2
�
21πQ2p2

64b2
þ ηp2

b
−

7παp2

128b2η2

−
Q2

bη
þ 7πQ2α

128η4b2
þ α

6η3b

�
: ð68Þ

For Q ¼ 0 and p ¼ 2, one can obtain the following form:

α̃¼
�
4η

b
−

απ

16η2b2
þ α

6bη3

�
þ
�
ωe

ω∞

�
2
�
4η

b
−

7πα

32b2η2
þ α

6η3b

�
;

α̃¼ 4η

b

�
1þ

�
ωe

ω∞

�
2
�
þOðη2Þ: ð69Þ

Because of the presence of the plasma medium, the
gravitational deflection angle increases and depends upon
the frequency of photons. In a homogeneous plasma
medium, the photons have a smaller frequency or greater
wavelengths and are deflected by a larger angle near the
gravitating center. For ω → ωe, the influential difference in
the gravitational deflection angles is substantial for longer
wavelengths, which is possible only for radio waves. In this
regard, the gravitational lens in a plasma acts as a radio
spectrometer [64]. Crisnejo and Gallo [35] have studied the
dynamics of light rays in a cold nonmagnetized plasma
medium. For this purpose, they have obtained the deflec-
tion angle for Schwarzschild spacetime in a homogenous
plasma medium by using the Gauss-Bonnet theorem, i.e.,
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α̃ ¼ 2m
b

�
1þ 1

1 − ðωe=ω∞Þ2
�
þOðm2Þ: ð70Þ

In comparison with the deflection angle obtained in
Ref. [35], with the choice of parameters η ¼ m, p ¼ 2,
α ¼ 0, and Q ¼ 0, our proposed deflection angle (67)
approximates the deflection angle of the Schwarzschild
black hole (70). In the future, astrophysical observations
might shed light on the effect of hair on the deflection

angle. Any discovery of hair would be an important signal
beyond general relativity.
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