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In this paper, we analyze the Hawking radiation (HR) of a non-asymptotically flat (NAF)
dyonic black hole (dBH) in four-dimensional (4D) Einstein–Maxwell–Dilaton (EMD)
gravity by using one of the semiclassical approaches which is the so-called Hamilton–
Jacobi (HJ) method. We particularly motivate on the isotropic coordinate system (ICS)
of the dBH in order to highlight the ambiguity to be appeared in the derivation of the
Hawking temperature (TH) via the HJ method. Besides, it will be shown that the ICS
allows us to write the metric of the dBH in form of the Fermat metric, which renders
possible of identification of the refractive index (n) of the dBH. It is unraveled that the
value of n and therefore the gravitational lensing effect is decisive on the tunneling rate
of the HR. We also uncloak how one can resolve the discrepancy about the TH of the
dBH in spite of that lensing effect.

Keywords: Dyonic black holes; gravitational lensing; Hawking radiation; factor-2 prob-
lem.
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1. Introduction

In classical point of view, black holes (BHs) are such objects that due to their
huge attractive forces even the light cannot escape from them. But, if we take
the quantum effects into account, they could be gray i.e. not entirely black. That
surprising claim was made by Hawking [1, 2] over 40 years ago. Hawking thought
that the quantum mechanics should allow the particles to tunnel through the event
horizon of the BH. After making marvelous calculations, Hawking theoretically
showed that BHs should emit a steady flux of thermal radiation with a temperature
TH = κ

2π in which κ is the gravitational field strength at the event horizon. On this
basis, a number of new methods have been proposed (a reader may consult [3, 4]
for the topical review).
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Among those methods, the universal consent one is the tunneling method which
is devised by Kraus and Wilczek (KW) [5, 6]. KW proved that the Hawking radi-
ation (HR) can be thought as a dynamical model in which while BH shrinks,
the particles radiate. In this dynamical model, both energy conservation and self-
gravitational effects which were not considered in the original derivation of HR
[1, 2] are taken into account. In fact, they treated each radiating particle as a self-
gravitating thin spherical shell with energy ω. Hence, by using the null geodesics of
the associated particles, it became possible to get the action (I) (and henceforth its
imaginary part, Im I) of the tunneling particle, which yields the tunneling rate as
Γ ≈ e−2 Im I and admits the TH due to the well-known quantum mechanical result,
Γ ≈ e−ω/T . Later on, KW’s method was improved by Parikh and Wilczek (PW) [7]
in order to show that the spectrum of the HR is not pure thermal, which implies
unitarity of the underlying quantum process, and the resolution of the information
loss paradox [8, 9].

Among the other methods, the Hamilton–Jacobi (HJ) method which uses the
relativistic HJ equation attracts great interest. This method is first devised by
Angheben et al. [10] (and references therein). They indeed built up an alternative
method for calculating Im I. The HJ method within the WKB approximation
ignores the self-gravitational effect and energy conservation. Generally, the HJ
method is employed by substituting a suitable ansatz into the relativistic HJ
equation. For the separability, the chosen ansatz should involve the symmetries
of the spacetime. The final radial equation is solved by an integration which is along
the classically forbidden trajectory starting from inside of the BH and extends to
the observation point. But during this calculation, the integral always possesses a
pole located at the horizon. This pole can be circumvented by applying the method
of complex path analysis [11–13].

According to us, most of the BHs in the macrocosm should be portrayed with
non-asymptotically flat (NAF) geometries. The mainstay of our thoughts is the
Friedmann–Robertson–Walker [14], which is assumed to be one of the best theor-
etical models in describing our universe, and as it is known its geometry is NAF. For
this reason, we focus on the commonly acceptable NAF BHs in order to compute
their TH by employing the HJ method. In the same line of thought, we consider the
dyonic black holes (dBHs) which are originally found by Yazadjiev [15]. The dBH
solutions considered here have two horizons hiding a curvature singularity at the
origin. As mentioned in [15], they may serve as backgrounds for non-supersymmetric
holography and lead to possible extensions of AdS/CFT correspondence [16]. On
the other hand, when the standard HJ method is applied to the dBH which can
be expressed in the isotropic coordinate system (ICS), we encounter with a dis-
crepancy between its computed horizon’s temperature and its standard TH . This
discrepancy problem arising during the use of the ICS has become popular anew.
Recently, Schwarzschild [17] and the linear dilaton BHs (LDBHs) [18] within the
ICS have been thoroughly studied. Inspiring from [18], we shall also calculate the
n of the medium of the dBH. Then, we highlight the effect of n on the tunneling
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rate, and consequently on the TH . The latter remark could be associated with the
gravitational lensing effect on the HR as in [19].

The structure of the paper is as follows. In Sec. 2, we introduce and review the
dBH. We give its some geometrical and thermodynamical features. For the sake of
example, we follow the systematic HJ method for deriving the TH of the dBH in its
naive coordinates. In Sec. 3, we first transform the naive coordinates of the dBH
into the ICS. Then, the effect of the n on the calculation of the Im I is explicitly
represented. The obtained horizon temperature is the half of the TH . At the last
stage of this section, a detailed analytical analysis is performed in order to resolve
the differences in the temperatures. We draw our conclusions in Sec. 4.

The paper uses the signature (−, +, +, +) and units where c = G = � = kB = 1.

2. dBH Geometry and HJ Method

In this section, we shall first describe the dBH spacetime which is the solution to the
four-dimensional (4D) Einstein–Maxwell–Dilaton (EMD) gravity. Its line-element
represents a static and spherically symmetric solution in the low-energy limit of the
string theory in which gravity is coupled to the electromagnetic field and dilaton.
These solutions possess both electric and magnetic charges, and they admit NAF
geometry. Then, we will apply the HJ method to the dBH metric given in its naive
coordinates in order to show that it concludes with the TH .

In the EMD theory [20], the 4D action is given by

S =
∫

d4x
√−g

(�− 2gµν∇µϕ∇νϕ − e−2αϕFµνFµν
)
, (1)

where � denotes the scalar curvature with respect to the spacetime metric gµν , ϕ is
the scalar dilaton field with a coupling constant α and Fµν is the electromagnetic
field. The dBH solution of the above action is given by [15]. Here, we shall take α = 1
as it has been considered very recently in [21]. The dBH spacetime is described by
the following line-element

ds2 = −fdt2 + f−1dr2 + R2
(
dθ2 + sin2 θdϕ2

)
, (2)

in which the metric functions are

f =
(r − r+)(r − r−)

r0r
, R2 = r0r. (3)

The constants r+ and r− represent inner and outer horizons, respectively. While
r+ and r− determine the value of the magnetic charge Qm, another constant r0

governs the electric charge Qe. Those relationships are given by

r0 =
√

2Qe, r+r− = 2Q2
m. (4)

When the Qm is vanished by setting the inner horizon to zero i.e. r− = 0, the
metric functions (3) describe the pure electrical LDBH spacetime. The eponyms of
the LDBH are Clément and Gal’tsov [22]. One of the most interesting features of
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the LDBHs is that while performing the HR, they undergo an isothermal process.
Namely, their HR is such a special process that the energy (mass) transfer out
of them typically happens at such a slow rate that thermal equilibrium is always
maintained. Today, there are numerous studies on the LDBHs (see, for instance
[18, 23–29]).

Due to the NAF structure of the dBH, one should follow Brown and York’s
quasi-local mass (M) formalism [30]. Thus, one derives a relationship between the
horizons and the M as follows:

M =
1
4
(r+ + r−). (5)

The TH is expressed in terms of the surface gravity κ [31] as follows:

TH =
κ

2π
=

∂rf

4π

∣∣∣∣
r=r+

. (6)

After substituting the metric function f (3) into the above equation, TH of the dBH
yields

TH =
r+ − r−
4πr0r+

. (7)

In the extremal BH solution i.e. r+ = r−, it can be easily seen that we obtain zero
temperature, which is a well-known issue.

Here, we focus on the problem of a scalar particle which crosses the event horizon
from inside to outside. While it acts this classically forbidden motion, we ignore
the back-reaction and self-gravitational effects. Within the semiclassical framework,
the action I of the particle in question should satisfy the relativistic HJ equation
which is given by

gµν∂µI∂νI + m2 = 0, (8)

where m is the mass of the scalar particle and gµν represents contravariant form of
the metric tensors of Eq. (2). By considering Eqs. (2), (3) and (8), we get

−1
f

(∂tI)2 + f(∂rI)2 +
1

R2

[
(∂θI)2 +

1
sin2 θ

(∂ϕI)2
]

+ m2 = 0. (9)

The technique of separation of variables is the commonly used method for the HJ
equation. To this end, the I is chosen as follows:

I = −Et + W (r) + Jk(xk). (10)

So, one finds

∂tI = −E, ∂rI = ∂rW (r), ∂kI = Jk, (11)

where Jk’s are constants in which k = 1, 2 label angular coordinates θ and ϕ,
respectively. The norm of the timelike Killing vector ∂t becomes (negative) unity
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at a particular location:

r ≡ R0 =
1
2

[
r+ + r− + r0

(
1 +

√
(r+ − r−)2

r2
0

+ 2
(r+ + r−)

r0
+ 1

)]
. (12)

It means that when a detector of an observer is located at R0 which is outside
the horizon, the energy of the particle measured by the observer corresponds to E.
After substituting Eq. (11) into Eq. (9) and solving it for W (r), we find out that

W (r) = ±
∫ √

E2 − f
R2

[
J2

θ +
J2

ϕ

sin2(θ) + (mR)2
]

f
dr. (13)

The positive and negative signs appeared in the above equation is due to the
quadratic form of Eq. (9). Solution of Eq. (13) with “+” signature corresponds to
outgoing scalar particles and the other solution i.e. the solution with “−” signature
refers to the ingoing particles. Evaluating the above integral around the pole at the
horizon (following the Feynman’s prescription given by [11–13, 32]), one reaches to

W(±) = ±Wh + χ, (14)

where Wh = iπEr+r0
r+−r−

and χ is a complex integration constant. Thus, we can deduce
that Im I arises from the pole at the horizon and the complex constant χ. Thence,
we can determine the probabilities of ingoing and outgoing particles while crossing
r+ as

Pout = e−2 Im I = exp[−2 ImW(+)], (15)

Pin = e−2 Im I = exp[−2 ImW(−)]. (16)

In the classical point of view, a BH absorbs any ingoing particles passing
its horizon. In other words, there is no reflection for the ingoing waves which
corresponds to Pin = 1. This is enabled by setting W(−) = 0 which amounts to
Im χ = πEr+r0

r+−r−
. This choice signifies also that the Im I for a tunneling particle

solely depends on W(+). Namely, we get

Im I = Im W(+) = 2πEr+r0r+ − r−. (17)

Therefore, the tunneling rate for the dBH can be obtained as

Γ = Pout = exp
(
−4πEr+r0

r+ − r−

)
(18)

and according to [7],

Γ = e−βE, (19)

in which β denotes the Boltzmann factor and T = 1
β , one can easily read the horizon

temperature of the dBH as

ŤH =
r+ − r−
4πr+r0

. (20)

This is equal to the TH obtained in Eq. (7).
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3. Isotropic Coordinates of the dBH and Lensing Effect on Its HR

The universe is homogeneous and isotropic on large scales. Isotropy of the universe
is well-known from experiments such as distribution of radio galaxies at Very Large
Array in Mexico, Cosmic X-Ray Background and Cosmic Microwave Background
at Planck and WMAP satellites [33]. In this section, we are dealing with the ICS.
Isotropic coordinates are used in general to kill the horizon and make the time
direction a Killing vector. Furthermore, time slices appear as Euclidean with a
conformal factor. By using this transformation, the index of refraction, n, of light
rays around the BH can be calculated.

The dBH solution in isotropic coordinates [34] can be found by the following
transformation

r = r− +
1
4ρ

(ρ + ρh)2, (21)

where ρh = r+ − r− defines the horizon in the ICS. By making this transformation,
the metric (2) becomes

ds2 = −Fdt2 + G
(
dρ2 + ρ2dΩ2

)
, (22)

with

F =
1

4ρr0

[ (
ρ2 − ρ2

h

)2
(ρ + ρh)2 + 4r−ρ

]
, (23)

G =
r0

4ρ3

[
4ρr+ + (ρ − ρh)2

]
. (24)

Once we rewrite the metric (22) as follows:

ds2 = F (−dt2 + ∆), (25)

we obtain the dBH in the form of the Fermat metric [35],

∆ = n2
(
dρ2 + ρ2dΩ2

)
, (26)

in which, as mentioned before, n is called the index of refraction or the refractive
index. For the dBH medium, we compute it as

n =
r0

√
[(ρ − ρh)2 + 4ρr+][(ρ + ρh)2 + 4ρr−]

ρ(ρ2 − ρ2
h)

. (27)

When we use the HJ equation (8) on the ICS metric (22), we get

−1
F

(∂tI)2 +
1
G

(∂ρI)2 +
1

Gρ2

[
(∂θI)2 +

1
sin2 θ

(∂ϕI)2
]

+ m2 = 0. (28)

It is possible to obtain the solution to the above equation in the following form

I = −Et + Wiso(ρ) + J(xi). (29)
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Thus we get an integral solution for Wiso(ρ) as

Wiso(ρ) = ±
∫

n

√
E2 − F

Gρ2

(
J2

θ +
J2

ϕ

sin2 θ

)
− m2Fdρ. (30)

Around the horizon the above solution reduces to

Wiso(±) = ±E

∫
ndρ. (31)

One can easily observe that the n of the dBH is decisive on the Wiso(±).
After making a straightforward calculation covering the Feynman’s prescription,
we obtain

Wiso(±) = ±i2πEr0

√
r+[(ρh + r−)]

ρh
+ µ

= ±i2πE
r0r+

r+ − r−
+ µ, (32)

where µ is another complex integration constant. Similar to the procedure followed
in the previous section i.e. setting Pin = 1 which yields Im µ = 2πEr0

r+
r+−r− , we

derive the imaginary part of the action I of the tunneling particle as follows:

Im I = Im Wiso(+) = 4πE
r0r+

r+ − r−
. (33)

Thus, by considering the tunneling rate expressions (18) and (19) one obtains the
horizon temperature of the dBH as

ŤH =
r+ − r−
8πr+r0

. (34)

As it can be seen above, the result is the half of the standard Hawking tempera-
ture; ŤH = 1

2TH . Therefore, we deduce that the present result infers that ICS leads
to an apparent temperature of the dBH that it is less than its TH . This phenomenon
resembles the case that the apparent depth h of a fish swimming at a depth d below
the surface of a pool is less than the true depth d. Namely, h < d. This illusion is
due to the discrepancy of the refractive indexes between the mediums. In particular,
such events take place when nobserver < nobject, as happened at here. Because, it
can be checked from Eq. (27) that the n value of the medium of an observer who
is placed at the outer region (ρ > ρh) is less than the n for the medium of the near
the horizon (ρ ≈ ρh). Since the value of Wiso(±) (31) acts as a decision-maker on
the value of the horizon temperature ŤH of the dBH, one can deduce that the n

(27), and consequently the gravitational lensing effect, plays an important role on
the observation of the true TH .

On the other hand, we admittedly know that coordinate transformation of the
naive coordinates to the isotropic coordinates should not alter the true temperature
of the BH. Since the appearances are deceptive, one should make deeper analysis to
get the real BH. This problem has been recently discussed by Chatterjee and Mitra
[17] for the Schwarzschild BH and by Sakalli and Mirekhtiary [18] for the LDBH.

1450074-7

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 2

01
4.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IA
M

I 
on

 0
1/

07
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



August 21, 2014 10:3 WSPC/S0219-8878 IJGMMP-J043 1450074

I. Sakalli, A. Ovgun & S. F. Mirekhtiary

They have proven that during the evaluation of the integral (31) around the horizon,
the path across the horizon involves a change of π

2 instead of π. By getting inspired
from their studies, here we shall follow the same strategy to overcome that factor-2
problem. For this purpose, we rewrite Eq. (21) as follows:

r = r− +
1
4ρ

(ρ + ρh)2

= r+ +
1
4ρ

(ρ − ρh)2, (35)

which means that
dr

r − r+
= −dρ

ρ
+

2dρ

ρ − ρh
. (36)

The first term at the right-hand side of the above equation does not admit
any imaginary part at the horizon. Only the second term of the right-hand side of
Eq. (36) admits the imaginary result. On the other hand, in order to match the
right-hand side and the left-hand side results in any imaginary contribution coming
from dρ

ρ−ρh
must be half of the dr

r−r+
. The latter remark produces a factor iπ

2 for
the integral (31) and therefore it results in ImWiso(+) = 2πE r0r+

r+−r−
as obtained in

Sec. 3. Thus, we read the horizon temperature as ŤH = r+−r−
4πr+r0

which is nothing
but the TH .

4. Conclusion

In this study, the HR of the dBH which has double horizons is studied via the
HJ method. We have first applied the associated HJ method to the dBH metric
expressed with the naive coordinates. Thus, we have explicitly shown how the HJ
method produces the TH . On the other hand, the most interesting part of this
paper belongs to Sec. 3 in which the dBH spacetime is transformed into the ICS.
In this system, with the aid of the Fermat metric we have managed to determine
the n of the dBH. In particular, it is proven that the n plays a decisive role on the
tunneling rate. Unlike to the naive coordinates, in the ICS the integration around
the pole which appears at the horizon has led the factor-2 problem in the horizon
temperature. For fixing this discrepancy, we inspired from recent studies [17, 18]
which have demonstrated how the proper regularization of singular integrals gives
the true horizon temperature, i.e. TH , in the ICS. As a result, it has been clarified
that the path across the horizon entails the value of iπ

2 on the integration instead
of iπ. Our results are in accordance with the work of [18] if one gets the limit
r− → 0.
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