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Abstract – We investigate the Hawking radiation of massive spin-1 vector particles, which are
coupled to vacuum fluctuations of a quantum field, from a Rindler modified Schwarzschild black
hole. Rindler acceleration is used to produce the post-general relativistic theory of gravity for
the distant field of a point mass. The gravitational lensing problem of the Rindler modified
Schwarzschild black hole is also studied. We compute the deflection angle for the IR region (large
distance limit as infrared) by using the Gaussian curvature of the optical metric of this back hole.
Our investigations clarify how the Rindler acceleration plays a role on the Hawking radiation and
gravitational lensing.

Copyright c© EPLA, 2017

Introduction. – Until the mid-1970s, black holes
(BHs) were believed to be such super absorbent objects in
the universe that nothing could come out from them. In
1974, Hawking [1,2] showed that a BH can thermally cre-
ate and emit virtual particles until it snuffs out its energy.
This condition means that if a BH does not gain mass
from any other source, then it could eventually shrink it-
self out of existence and evaporate completely; this pro-
cess is called Hawking radiation (HR). HR is an intriguing
puzzle that results from the amalgamation of general rela-
tivity and quantum mechanics. Hawking [1,2] showed that
black hole evaporation cannot be the result of the unitary
evolution of a pure state. Thus, the process of gravita-
tional collapse is incompatible with the standard principles
of quantum mechanics. In fact, the radiation emitted by
a BH at late times is exactly described by a thermal den-
sity matrix (modulated by a greybody factor). A density
matrix is a well-known matrix that describes a quantum
system in a mixed state (a statistical ensemble of several
quantum states). Therefore, as is the case with black-
body radiation, HR quanta do not carry information. No
mathematical transformation exists between the unitary
operator and the density matrix. Thus, the information
encoded in the wave function is irretrievably lost; this pro-
cess is known as the so-called information loss paradox [3].
Efforts to resolve this problem have been continuing even

today. A reader who wants to learn the details and recent
developments about the information loss paradox may re-
fer to [4–6]. On the other hand, studies [7–9] on the density
matrix of a BH radiation have recently attracted much at-
tention. It has been shown that small fluctuations of the
BH horizon give rise to corrections to the density matrix
of the HR. The associated corrections are shown to be the
correlations between the HR and the background geom-
etry [9]. It is worth noting that correlations account for
the information stored in the BH with the collapsing mat-
ter. Since the original studies of BH emission [1,2], works
on the HR have been still continuing. To date, HR was
verified by various methods for many different types of
particles having spin s = 0, 1/2, 1, 3/2, 2, . . . [10–28]. HR
studies include the lower- and higher-dimensional BHs,
wormholes, and black strings [26,29–36]. Recent studies
[37–39] have claimed that HR has been observed in the
laboratory environment. Those experiments about HR
were conducted by Steinhauer, who used a sonic (or the
so-called analogue) BH in an atomic Bose-Einstein con-
densate [40], i.e., a state where gas bosons are cooled
to temperatures very close to absolute zero (that is, very
near 0 K or −273.16 ◦C). Thus, the sonic BH could mimic
a real cosmic event horizon. At this stage, Steinhauer
managed to observe the particles of sound (phonons) at
the BH’s event horizon and found that sound waves in
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the Bose-Einstein condensate obey Hawking’s theory [39].
However, many physicists are still cautious about these
results. Other experiments are needed to support the ex-
periment of Steinhauer.

In particle physics, spin-1 particles are called vector
particles. The most well-known massive spin-1 particles,
which are described by a three-dimensional spin vector are
the weak intermediate vector bosons Z and W±, and the
mesons Υ, J/Ψ, φ, and ρ [41]. Photons are the mass-
less spin-1 particles, which can only be directed parallel
or anti-parallel to their direction of motion. Free massive
spin-1 fields are governed by the Proca field equation, and
massless spin-1 fields are governed by the Maxwell field
equation. Compelling evidence suggests that the spin-1
fields are potential darkmatter candidates [42–44]. In re-
cent years, HR of the spin-1 particles has attracted con-
siderable interest [45–51].

In this study, we consider the Rindler modified
Schwarzchild BH (RMSBH) [52,53], which was initially
proposed by Grumiller to explain the mysterious at-
tractive constant radial force that acts on the Pioneer
spacecrafts [54]. The force law obtained from Rindler’s
acceleration term has a considerable effect on the grav-
ity at very long distances. However, Turyshev et al. [55]
showed that the Pioneer anomaly is due to the thermal
heat loss of the satellites. Nevertheless, RMSBH is still on
the agenda because it provides a basis for the theoretical
explanation of the following issues: rotation curves of spi-
ral galaxies, gravitational redshift, and perihelion shift in
planetary orbits. Previous studies of the RMSBH, which
include subjects of spectroscopy of area/entropy, quan-
tum tunneling, and geodesics, can be seen in [56–58]. The
Rindler acceleration is also used in quantum gravity the-
ories to explain the rotation of the curve formula for the
local galaxies [52–54]. The new Rindler acceleration term
is studied as an alternative of the dark matter in galax-
ies and it is checked by using 8 galaxies of the HI Nearby
Galaxy Survey which gives the Rindler acceleration pa-
rameter of around a ≈ 3 ∗ 10−9 cm/s2 [59–62].

Light is an electromagnetic radiation within a certain
portion of the electromagnetic spectrum. On the other
hand, HR is mainly a thermal radiation. The main pur-
pose of this paper is to study the two possible problems
about the radiation physics (flow of atomic and subatomic
particles and of waves, such as those that characterize heat
rays, light rays, and X-rays) of the RMSBH: HR of the
RMSBH and gravitational lensing of the RMSBH. To this
end, we first study the HR of the massive spin-1 particles
tunneling from the RMSBH. We apply the Hamilton-
Jacobi and the complex path integration quantum tun-
neling methods [12,13,63] to the Proca equation [45] and
obtain a set of differential equations. Following [45–49], we
set the determinant of the coefficient matrix of the equa-
tion to zero to obtain a non-trivial solution. Thus, we
obtain the leading-order term of the classical action (S0)
of the vector particles that are outgoing/ingoing from the
horizon. We finally derive the tunneling rate of the spin-1

particles in the RMSBH and read the Hawking temper-
ature of the RMSBH. The phenomenon of gravitational
lensing, which was predicted by Einstein’s theory of gen-
eral relativity, is a side effect of light moving along the
curvature of spacetime, where the light that passes near a
massive object is deflected slightly toward the mass. This
phenomenon was observed for the first time in 1919 by
Eddington and Dyson during a solar eclipse [64]. Since
then, gravitational lensing has been one of the most im-
portant tools in astronomy and astrophysics. For more
details and recent contributions about gravitational lens-
ing, the reader may refer to [65–71]. We will also study
the gravitational lensing problem of the RMSBH. For this
purpose, we follow the geometrical method of Gibbons and
Werner [72]. In this manner, we explore the effect of the
Rindler acceleration on the deflection of light moving in
the IR region of the RMSBH. The paper is organized as
follows: in the second section, we introduce the physi-
cal features of the RMSBH geometry. The third section
is devoted to the computation of the HR of the massive
spin-1 particles from the RMSBH. In the fourth section,
we study the deflection of light from the RMSBH at the IR
region via the method of Gibbons and Werner [72]. Our
results are summarized and discussed in the last section.
(Throughout the paper we use units in which fundamental
constants are G = c = kB = 1.)

RMSBH geometry. – Grumiller [52] constructed an
effective model for the gravity of a central object at large
scale (i.e., outside the galaxy) called the RMSBH geome-
try. The Rindler term in the RMSBH spacetime causes an
anomalous acceleration in the geodesics of test particles.
RMSBH is the solution to the generic effective theory of
gravity described by the following action:

S = −
∫

d2x
√−g

[
Φ2R + 2(∂Φ)2 + 8aΦ − 6ΛΦ2 + 2

]
,

(1)
where g = det(gμν) is the determinant of the metric ten-
sor, Φ denotes the scalar field, Λ is the cosmological con-
stant, R is the Ricci scalar and a stands for the Rindler
acceleration. The Rindler acceleration is for explaining
about the Pioneer anomaly and also the shape of galac-
tic rotation curve [52–54]. After applying the variational
principle to action (1) and solving the corresponding field
equations, one can obtain the following spherically sym-
metric line-element that models the IR gravity:

ds2 = −fdt2 +
1
f

dr2 + r2 (
dθ2 + sin2 θdφ2) , (2)

where

f = 1 − 2M

r
− Λr2 + 2ar. (3)

Metric (2) is nothing but the RMSBH spacetime. In
eq. (3), the quantity M is an integral constant. When
a = Λ = 0, one easily recovers the Schwarzschild solution,
with M being the BH mass. Moreover, if M = Λ = 0,
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Fig. 1: (Color online) Plots of TH vs. a. The plots are governed
by eq. (9). Each color represents a RMSBH with different mass.

then line-element (2) is the two-dimensional Rindler met-
ric [73]. The value of Λ is approximated to 10−123 [74,75];
therefore, we set it to zero (Λ = 0) for simplicity. More-
over, at the IR region, the value of the Rindler acceleration
is estimated as a ≈ 10−62–10−61 [52]. Metric function (3)
can be rewritten as

f =
2a

r
(r − rh)(r − rn), (4)

in which

rn = −1 +
√

1 + 16aM

4a
. (5)

Since the radial coordinate r is defined in the range of
0 ≤ r < ∞, it is therefore clear that rn (having negative
value) is not a physical quantity, and thus it cannot be
interpreted as the horizon (see, for example, [76]). So,
RMSBH spacetime possesses only one horizon, which is
called the event horizon (rh):

rh =
−1 +

√
1 + 16aM

4a
. (6)

The Bekenstein-Hawking entropy [73,77] of the RMSBH
is given by

SBH =
Ah

4�
=

πr2
h

�
, (7)

where Ah = 4πr2
h is the surface area of the RMSBH. The

following conventional definition of the surface gravity de-
fined for a spherically static spacetime [77] is used:

κ =
∂rf

2

∣∣∣∣
r=rh

= a

(
1 − rn

rh

)
, (8)

where a prime on a function denotes differentiation with
respect to r. From here on, we read the Hawking
temperature of the RMSBH as follows:

TH =
�κ

2π
=

a�

2π

(
1 − rn

rh

)
. (9)

Figure 1 shows how the Hawking temperature changes
with Rindler acceleration in the RMSBH geometry.

Quantum tunneling of massive vector particles
from RMSBH. – In this section, we compute the HR
of massive vector particles, which quantum mechani-
cally tunnel from the RMSBH. We consider the Proca
equation [45]:

1√−g
∂μ

(√−gΨνμ
)

+
m2

�2 Ψν = 0, (10)

which corresponds to the wave equation of a spin-1 field
Ψν of mass m. In eq. (10), the second rank tensor is
defined by

Ψμν = ∂μΨν − ∂νΨμ. (11)

Considering the WKB method, the ansatz of the spin-1
field can be defined by [46,78]

Ψν=Cν exp
(

i

�
(S0(t, r, θ, φ)+� S1(t, r, θ, φ)+. . . .)

)
, (12)

where S0(t, r, θ, φ) is the kinetic term equal to the classi-
cal action of the particles [24], Sj=1,2,...(t, r, θ, φ) are the
higher-order action corrections, and Cν = (C1, C2, C3, C4)
represents some arbitrary constants. Furthermore, taking
cognizance of the Hamilton-Jacobi method which takes the
advantage of the symmetry (Killing vectors) of the space-
time [78], one can set the leading order of the action to [79]

S0(t, r, θ, φ) = −Et + R(r, θ) + jφ + k, (13)

where E and j denote the energy and angular momentum
of the vector particles, respectively. k is a complex
constant.

After manipulating the Proca equation (10) with
eqs. (12) and (13), we obtain a quadruple equation set
to the lowest order in � as follows:

see eqs. (14)–(17) on the next page

After this stage, we can obtain a 4 × 4 coefficient ma-
trix of ℵ(C1, C2, C3, C4)T = 0 in which the superscript T
represents the transition to the transposed vector. The
non-zero components of ℵ matrix are given by

ℵ11 = ℵ24 = −E (∂rR) , (18)

ℵ12 = ℵ34 = −E(∂θR)
r2f

, (19)

ℵ13 = ℵ44 = − Ej

r2f sin2 θ
, (20)

ℵ14 = −
[
sin2 θ(r2f (∂rR)2 + m2r2+(∂θR)2) + j2

]
r2f sin2 θ

, (21)

ℵ21 =−
[−sin2 θf(∂θR)2−f(m2r2 sin2 θ+j2)+E2r2 sin2 θ

]
r2 sin2 θ

,

(22)

ℵ22 = ℵ31 = −f (∂rR) (∂θR)
r2 , (23)
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−E (∂rR)C1 − E(∂θR)C2

r2f
−

[
sin2 θ

(
r2f(∂rR)2 + m2r2 + (∂θR)2

)
+ j2

]
C4

r2f sin2 θ
− EjC3

r2f sin2 θ
= 0, (14)

−
[− sin2 θf(∂θR)2−f(m2r2 sin2 θ+j2)+E2r2 sin2 θ

]
C1

r2 sin2 θ
− f (∂rR) (∂θR)C2

r2 − jf (∂rR)C3

r2 sin θ
−E (∂rR)C4 =0, (15)

−f (∂rR) (∂θR)C1

r2 −
[
− sin2 θf (∂rR)2−f(m2r2 sin2 θ+j2)+E2r2 sin2 θ

]
C2

r2 sin2 θ
− j(∂θR)C3

r4 sin2 θ
− (∂θR)EC4

r2f
=0, (16)

− jf (∂rR)C1

r2 sin2 θ
− j(∂θR)C2

r4 sin2 θ
+

[
f(∂θR)2 − r2(−f2 (∂rR)2 − m2f + E)

]
C3

r4f sin2 θ
− jEC4

r2 sin2 θf
= 0. (17)

m2
[
sin2 θf(∂θR)2 + f2r2 (∂rR)2 + f

(
m2 sin2 θr2 + j2

) − E2r2 sin θ
]3

r10 sin θf3 = 0, (28)

ℵ23 = ℵ41 = − jf (∂rR)
r2 sin θ

, (24)

ℵ32 =−
[
−sin2 θf (∂rR)2−f(m2r2 sin2 θ+j2)+E2r2 sin2 θ

]
r2 sin2 θ

,

(25)

ℵ33 = ℵ42 = − j(∂θR)
r4 sin2 θ

, (26)

ℵ43 =

[
f(∂θR)2 − r2(−f2 (∂rR)2 − m2f + E)

]
r4f sin2 θ

. (27)

The non-trivial solution of the quadruple equation set
is conditional on detℵ = 0. Thus, we have

see eq. (28) above

which yields the integral solution of the radial function as

R± =
∫

±

√
E2 − f

(
m2 + (∂θR)2

r2 + j2

sin2 θr2

)
f

. (29)

R+(r) and R−(r) correspond to the outgoing (i.e.,
emission) and ingoing (i.e., absorption) vector particles
from/to the RMSBH, respectively. Because of a pole
located at the horizon, the imaginary part of R±(r)
can be calculated by using the complex path integra-
tion method [12,13]. Therefore, we can evaluate the in-
tegral (29) in the vicinity of the horizon as

ImW±(r) = ± π

∂rf
E

∣∣∣∣
r=rh

. (30)

The probabilities of the massive vector particles, tun-
neling from the horizon of RMSBH, become

Pemission = e− 2
�
ImS+ = e[−

2
�
(ImW++Imk)], (31)

Pabsorption = e− 2
�
ImS− = e[−

2
�
(ImW−+Imk)]. (32)

According to the classical concept of BH physics, the
ingoing vector particles must be fully absorbed, as indi-
cated by Pabsorption = 1. This requirement can be fulfilled
with Imk = −ImW−. Recalling W+ = −W−, we can thus
compute the quantum tunneling rate of the massive vector
particles of the RMSBH as

Γ = Pemission = exp
(

−4
�
ImW+

)

= exp

(
− 4π

� (∂rf)
E

∣∣∣∣
r=rh

)
. (33)

Γ is also equivalent to the Boltzmann factor [24]. The lat-
ter remark enables us to compute the surface temperature
of the RMSBH as follows:

T =
� (∂rf)

4π

∣∣∣∣
r=rh

=
a�(rh − rn)

2πrh
. (34)

The above result completely overlaps with the Hawking
temperature (9) of the RMSBH. The Hawking temper-
ature of the RMSBH increases proportionally with the
Rindler acceleration, which can be also best seen in fig. 1.

Deflection of light from RMSBH. – In this section,
we will study the deflection of null geodesics from the
RMSBH, that is, the gravitational lensing problem. The
main reason to combine the Hawking radiation and the
deflection of light is that the gravitational lensing is
an observational effect to help to model the theoretical
theories. We made a new claim that due to the interaction
of the galaxies, the normal matter is separated from the
dark matter after the collision of galaxies, then the
bending of light occurs due to the the dark matter from
the cluster differently to the case without dark matter.
Moreover, an increasing number of new observations give
evidences to propose that the unknown particles of dark
matter may have another property, that is that they
can make self-interaction, namely an exchange of dark
photons which have spin-1 may create the force. In this
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work, by investigating the radiation of spin-1 particles,
such as dark photons from the black hole, we find the
evidence of dark matter. Moreover, astronomers may
have an extremely powerful tool to see the gravitational
effects of the dark matter using the gravitational lensing.
For this purpose, weak lensing occurs when the light from
a distant galaxy passes a distance from a dark matter
concentration and produces a slight distortion in the
shape of a distant galaxy.

To this end, we will suppose that RMSBH consists of a
perfect fluid, which can be thought of as the stellar fluid
of a cluster of galaxies. Such stellar fluids act as a grav-
itational lens, which is capable of bending the light from
the source as the light travels toward the observer. By
using the static and spherically symmetric feature of met-
ric (2), without loss of generality, we can assume that null
geodesics (ds2 = 0) lie in the equatorial plane: θ = π/2.
Therefore, all images are collinear with the lens center [80].
Light rays are the spatial projection of the null geodesics of
the line element of the optical metric [81], which is given by

dt2 = gom
ij dxidxj , (35)

where gom
ij originates from Fermat’s principle [82,83]:

gom
ij =

gij

−g00
. (36)

Thus, metric (35) becomes

dt2 = dr∗2 + F (r∗)2dφ2, (37)

where r∗ is the radial Regge-Wheeler tortoise coordinate

dr∗ =
dr

f
, (38)

and
F (r∗) =

r√
f

, r = r(r∗). (39)

We immediately deduce from eq. (37) that the optical
metric is a surface of revolution. The intrinsic or the
so-called Gaussian curvature K [72] of the optical metric
can be expressed as follows:

K = − 1
F (r∗)

d2F (r∗)
dr∗2 ,

= − 1
F (r∗)

[
dr

dr∗
d
dr

(
dr

dr∗

)
dF (r∗)

dr

+
(

dr

dr∗

)2 d2F (r∗)
dr2

]
. (40)

The area element of the optical metric (35) is given by

dA =
√

|det g0m|drdφ =
r√
f3

drdφ. (41)

We now consider a lens model of a perfect fluid, which
is characterized by the following energy momentum
tensor [84]:

T αβ = diag[ρ(r), p(r), p(r), p(r)], (42)

where p(r) and ρ(r) denote the pressure and density,
respectively. If we set [84]

f =
r − 2μ(r)

r
, (43)

where

μ(r) = 4π

r∫
0

ρ(r′)r
′2dr′, (44)

from eqs. (3), (43), and (44), we obtain

r∫
0

ρ(r′)r′2dr′ =
1
4π

(
M − ar2) . (45)

Therefore, the Tolman-Oppenheimer-Volkoff equation [84,
85], which ensues from the conservation of the energy
momentum tensor (∇αT αβ = 0), reads [84]

dp(r)
dr

= − [ρ(r) + p(r)]
[
μ(r) + 4πr3p(r)

]
r2f

. (46)

Equation (46), in fact, shows the hydrodynamical behav-
ior of a massive compact astrophysical object in terms of
mass, pressure, and energy density [84]. We also have

df

dr
=

2
r2

[
μ(r) + 4πr3p(r)

]
. (47)

By inserting eqs. (46) and (47) into eq. (40), we can
obtain the Gaussian optical curvature as follows:

K =
−2μ(r)

r3

{
f +

μ

2r
− 4πr3

μ

[
ρ(r)f

+ p(r)
(

f − μ(r)
r

− 2πp(r)r2
)]}

. (48)

Our main motivation is to study the weak gravitational
lensing phenomenon, which is more realistic in the astro-
physical observation. For this reason, we shall focus on
the non-relativistic kinetic theory (e.g., the collisionless
Boltzmann equation [86] of the non-relativistic stellar
fluids). This condition means that the pressure is ignored
in eq. (48) (see also [84]). Thus, the multiplication of the
Gaussian optical curvature with the area element of the
optic metric results in

KdA =
−2μ(r)

r2
√

f3

{
f +

μ(r)
2r

− 4πr3

μ(r)
[ρ(r)f ]

}
drdφ. (49)

In the spirit of [72], RMSBH lens can be characterized by
(see eq. (45))

ρ(r) ≈ − a

2πr
. (50)

However, in the weak field limit (corresponding to r 	 2M
(see, for example, [87,88])), similar to the Schwarzschild
lens [72], the density vanishes. Therefore, eq. (44) admits

μ(r) ≈ const, (51)
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and eq. (49) becomes

KdA ≈ −2μ(r)
r2

√
f3

[
f +

μ(r)
2r

]
drdφ. (52)

The deflection angle (δ) is calculated by integrating the
Gaussian curvature on the circular boundary of domain
D2 [72], which can be best seen from fig. 1 of [72]. In the
weak deflection limit, it is assumed that the light rays are
governed by the function (at zeroth order) of

r(t) =
b

sin φ
, (53)

where b is known as the impact parameter with
b 	 M [84]. Furthermore, since we take cognizance of
the IR region, eq. (52) can be recast into the following
expression by using the Taylor series:

KdA ≈ − 1
2
√

2

(
ar3)− 3

2 drdφ. (54)

Thus, δ is computed via the following integral [72]:

δ = −
∫ ∫

D2

KdA,

≈ 1
2
√

2

∫ π

0

∫ ∞

b/ sin φ

(
ar3)− 3

2 drdφ,

=
10

147
√

a3b7
EllipticK

(
1√
2

)
,


 0.126127529√
a3b7

. (55)

The above result shows the RMSBH’s gravitational
lensing deflection angle at the IR region. Evidently, the
deflection angle is inversely proportional to the Rindler
acceleration, that is, gravitational lensing of an accel-
erated RMSBH is less than the almost non-accelerated
RMSBH. The latter remark implies that observing (via
the gravitational lensing) RMSBH will be more difficult
than observing Schwarzschild BH. Meanwhile, we should
not overlook the point that a3b7 would have a significant
value because the impact parameter b 	 μ in the denom-
inator of eq. (55). This finding means that the deflection
angle possesses a small value at the IR region.

Conclusion. – In this paper, two problems of radi-
ation physics about the RMSBH were considered. We
focused on the HR of massive spin-1 particles and grav-
itational lensing of the RMSBH, respectively. In fact,
massive spin-1 particles are a potential dark matter can-
didate [42] and one of the most successful techniques to
explore the dark matter has so far been the effect of grav-
itational lensing [89]. Although our work is purely theo-
retical, we believe that such theoretical studies will lead
to the observation of the dark matter in the future. To in-
vestigate the HR of massive vector particles, we employed
the Proca equation (10) in the RMSBH background within

the concept of the semiclassical WKB approximation. By
taking into account the Hamilton-Jacobi and the complex
path integration methods [12,13], we computed the tun-
neling rate (28) of the RMSBH, which is ruled by the well-
known Boltzmann factor. Then, the temperature obtained
from the resulting tunneling rate is shown to be the same
as the original Hawking temperature (9) of the RMSBH.
The Hawking temperature of the RMSBH increases pro-
portionally with the Rindler acceleration, which can be
best seen in fig. 1. We also applied the geometrical ap-
proach of the gravitational lensing theory to the RMSBH.
The optical metric (37) in which the geodesics are the
spatial light rays of the RMSBH was derived to calculate
the Gaussian curvature in the weak deflection limit. At
the IR region, the deflection angle (54) decreases with the
increasing Rindler acceleration value, that is, the grav-
itational lensing of the RMSBH is always less than the
Schwarzschild BH. The gravitational lensing of a rotating
RMSBH, which can be easily obtained by the Newman-
Janis algorithm [90,91], would be interesting to explore. In
a rotating geometry, images are no longer collinear with
the lens center [92]. Therefore, such a problem may reveal
more information compared with the present case. This
issue is the next stage of study that interests us.
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