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Abstract In the present paper we explore the Hawking radiation as a quantum tunneling
effect from a rotating 5 dimensional Myers-Perry black hole (5D-MPBH) with two inde-
pendent angular momentum components. First, we investigate the Hawking temperature
by considering the tunneling of massive scalar particles and spin-1 vector particles from
the 5D-MPBH in the Painlevé coordinates and then in the corotating frames. More specif-
ically, we solve the Klein-Gordon and Proca equations by applying the WKB method and
Hamilton-Jacobi equation in both cases. Finally, we recover the Hawking temperature and
show that coordinates systems do not affect the Hawking temperature.

Keywords 5-D Myers-Perry black hole · Qunatum tunneling · Klein-Gordon equation ·
Proca equation

1 Introduction

In 1974, Stephen Hawking suggests black holes cannot be completely black, and instead
due to the quantum effects or quantum fluctuations they evaporate [1]. Hawking discovered
that if a quantum fluctuation takes at the event horizon, then, due to the quantum tunneling
effect one of the virtual particles can be produced just inside the black hole, and the other
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particle outside the black hole. The particle produced inside the black hole will have a
negative energy, this causes the black hole to lose mass and shrink over time and eventually
after a very long period of time completely evaporate and disappear. On the other hand, the
particle produced outside the black hole will have positive energy and can be detected by an
observer as a real particle at infinity.

After this amazing discovery, calculation of the Hawking radiation from different types
of black holes with various methods become hot topics [3–9]. Recently, it has been specu-
lated that the Hawking radiation and its entanglement in an analogue black hole has been
observed [2]. However, this result is debatable and needs more confirmation by other exper-
iments. Furthermore, previously, the Hawking radiation of scalar bosons, spin-1 vector
particles, spin-2 particles, spin-3/2 particles of different types of black holes and wormholes
are studied [10–38].

On the other hand, Hawking radiation from higher–dimensional black holes has attracted
a lot of attention. For example, Hawking radiation from a rotating 5D-MPBH with two
angular momentum components was investigated in Refs. [39, 40], quantum anomalies
in 5D-MPBH [41], Hawking radiation of Dirac particles from a charged 5D-MPBH was
investigated in [42–45], and recently the tunneling of Dirac particles under quantum grav-
ity effects from 5D-MPBH with a single non-zero angular momentum was studied in [46].
However, vector particles play a fundamental role in particle physics, for example, recently,
there was an attempt to explain the origin of dark energy from a massive photon [47]. In
Refs. [48, 49] a massive photon or the so-called Darklight was studied to explain the origin
of dark matter.

Inspired by this, in this paper, we calculate the Hawking temperature of scalar bosons
and spin-1 vector particles tunneling across the near horizon of the black holes using the
Hamilton-Jacobi method. In particular, we use the quantum tunneling method to study the
Hawking radiation from a rotating 5D-MPBH with two angular momentum components of
massive scalar/vector particles. Furthermore, we will aim to solve the problem by using dif-
ferent coordinates. Firstly, we will use the Painlevé coordinates and then we will eliminate
the rotating degrees of freedom and introduce an appropriate coordinate transformation to
the co-rotating frame [40].

The organization of this paper is as follows. In Section 2, we introduce the rotating
5-dimensional Myers-Perry black hole (5D-MPBH) and in Section 3, we investigate the
tunneling of massive bosons and spin-1 particles from the 5D-MPBH in the Painlevé coor-
dinates. The tunneling of massive bosons and spin-1 particles from the 5D-MPBH in the
corotating frame is studied in Section 4. Section 5 is devoted to our conclusion.

2 Rotating 5–Dimensional Myers–Perry Black Hole

A rotating 5D-MPBH in D = 2n + 1 + ε (ε = 0 or 1) dimensions, with multiple
nonzero angular momentum parameters, can generally be written in the following form
[39, 40]

ds2 = − dt2 + εr2dα2 +
n∑

i=1

(r2 + a2i )(dμ
2
i + μ2

i dφ
2
i )

+ r20 r2−ε

�F

(
dt −

n∑

i=1

aiμ
2
i dφi

)2

+ �F
� − r20 r2−ε

dr2 (1)
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where

F = 1 −
n∑

i=1

a2i μ
2
i

r2 + a2i

, (2)

and

� =
n∏

i=1

(r2 + a2i ). (3)

Moreover μi and α are related as
n∑

i=1

μ2
i + εα2 = 1, (0 ≤ μi ≤ 1), (−1 ≤ α ≤ 1). (4)

A rotating black hole in D = 5, rotates in each φi–direction, so there are (D − 1)/2
angular momentum components. Next, let us introduce μ1 = cos θ , μ2 = sin θ , φ1 = φ,
and φ2 = ψ ; then we end up with the following metric:

ds2=gμνdx
μdxν = − dt2 + ρ2r2



dr2 + ρ2dθ2 + (r2 + a2) sin2 θ dφ2

+ (r2+b2) cos2 θ dψ2+ r20

ρ2

(
dt − a sin2 θdφ−b cos2 θ dψ

)2
, (5)

where

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, 
 = (r2 + a2)(r2 + b2) − r20 r2, a1 = a, a2 = b. (6)

Note that r0 is length parameter connected with the black hole mass M by

M = 3r20
8
√

πG
, (7)

where G is (4 + 1) dimensional gravitational constant. On the other hand the parameters a

and b are associated with its two independent angular momenta, respectively.
Solving grr (r+) = 0 one can find the relation for the event horizon given by

r2± = 1

2

[
r20 − a2 − b2 ±

√
(r20 − a2 − b2)2 − 4a2b2

]
. (8)

We can now choose a new coordinate frame, co–rotating with the black hole horizon, to
eliminate the dragging motion on the rotating degrees of freedom of a tunneling particle by
using the following coordinate transformations

dφ = dφ̃ + �adt, dψ = dψ̃ + �bdt, (9)

in which the corresponding angular velocities at the horizon are given by

�a = a

r2 + a2
, �b = b

r2 + b2
. (10)

Then the metric (5) reads

ds2 = − Gtt (r, θ, φ, ψ) dt2+ r2ρ2



dr2 + ρ2dθ2 +

[
(r2 + a2) + r20a2 sin2 θ

ρ2

]
sin2 θ dφ̃2

+
[
(r2 + b2) + r20b2 cos2 θ

ρ2

]
cos2 θ dψ̃2 + 2 a b r20

ρ2
sin2 θ cos2 θ dφ̃ dψ̃ (11)
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where

Gtt (r, θ, φ, ψ) = gtt − gφφ�2
a − gψψ�2

b + 2gtφ�a + 2gtψ�b − 2gφψ�a�b. (12)

Note that in the coordinate frame which is co–rotating with the event horizon gtφ̃i
=

gtφi
− gφiφj

�j , should be zero at the horizon. i.e., gtφ̃i
(r+) = 0 [40]. By taking this into

account Eq. 12 simplifies to

Gtt (r+) = gtt + gtφ�a + gtψ�b, (13)

in which

grr = r2ρ2(r)


(r)
, (14)

gtt = 1 − r20

ρ2
, (15)

gtφ = ar20 sin
2 θ

ρ2
, (16)

gtψ = br20 cos
2 θ

ρ2
. (17)

The Hawking temperature of the rotating 5-D MPBH in the units kB = c = G = � = 1
can be computed as follows [39, 40]

TH = κ(r+)

2π
= lim

r→r+

∂r

√
Gtt

2π
√

grr

= ∂r� − 2r20 r

4πr20 r2

∣∣∣∣∣
r=r+

(18)

3 Quantum Tunneling in Painlevé Coordinates

3.1 Tunneling of Vector Particles

The particle being emitted by the black hole should not depend on some fixed azimuthal
angles (θ0, φ0, ψ0). If we introduce the following Painlevé coordinate transformation into
the Eq. 11

dt = dT −
√

grr (r, θ0, φ0, ψ0) − 1

Gtt (r, θ0, φ0, ψ0)
dr, (19)

then keeping in mind that for a fixed angles in the co–rotating frame the tunneling particles
should satisfy dφ̃ = dψ̃ = 0, we find the following metric [40]

ds2 = −F(r)dT 2 + 2
√

F(r)
√

H(r) − 1 drdT + dr2 (20)

in which T is the Painlevé coordinate time and

F(r) = Gtt (r), H(r) = grr (r). (21)

The motion of a massive vector particle, described by the vector field �μ, can be studied
by the Proca equation (PE), which reads [15–20]

1√−G
∂μ

(√−G �μν
)

− m2

�2
�ν = 0, (22)
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where G = detGμν = FH and

�μν = ∂μ�ν − ∂ν�μ. (23)

The PE equation in the spacetime metric (20) can be solved by applying the WKB
approximation method which suggest that

�ν = Cν(T , r) exp

(
i

�
(S0(T , r) + � S1(T , r) + . . . .)

)
. (24)

Furthermore by considering the spacetime symmetries of the metric (20), the following
ansatz for the action can be chosen

S0(T , r) = −E T + R(r), (25)

in which E is the energy of the particle. We can now insert Eq. 24 into the Eq. 22 and keep
only the leading order of �. Hereinafter, we have two differential equations:

(
−√

Fm2
√

H − 1 + ER′
)

C1

FH
+

(
(R′)2 + m2

)
C2

FH
= 0, (26)

(−Fm2 + E2
)
C1

FH
+

[
E

√
FR′√H − 1 − √

Fm2(H − 1)
]
C2

FH
√

H − 1
= 0 (27)

With the non-zero elements of the matrix M:

M11 = −√
Fm2

√
H − 1 + ER′

FH
(28)

M12 = (R′)2 + m2

FH
, (29)

M21 = −Fm2 + E2

FH
, (30)

M22 = E
√

FR′√H − 1 − √
Fm2(H − 1)

FH
√

H − 1
(31)

Solving the determinant

detM(C1, C2)
T = 0, (32)

we find the following equation

−
m2

(
F 3/2H

√
H − 1m2 − F 3/2

√
H −1(R′)2+ E2

√
F

√
H −1 +2EFR′(H − 1)

)

H 2F 3/2
√

H − 1
=0.

(33)
Let us now solve this equation for the radial trajectories to get the following integral

R±(r) =
∫ (

E
√

H − 1√
F

±
√

H
√

E2 − m2F√
F

)
dr. (34)

In order to calculate the tunneling rate, one faces the well known factor–two problem (see
for example [50–54]). The right way to solve this problem is to consider first the invariance
under canonical transformations given as

∮
prdr = ∫

p+
r dr−

∫
p−

r dr . We can first calculate
the spatial contribution of the imaginary part of ImR(r). To do so, first we note that there
is a pole at the horizon r = r+ of the Eq. 34, since F(r+) = 0 and H(r+) = 0, where
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we have used the relation H = H−1. Thus if we shift the pole into the upper half plane
r+ → r+ + iε and take the imaginary part of Eq. 34 we find

Im
∮

prdr = lim
ε→0

{
Im

∮
E

√
1 − H ± √

E2 − m2F
√
H′(r+, θ0, φ0, ψ0) F ′(r+, θ0, φ0, ψ0)(r − r+ ± iε)

dr

}
,

(35)
where we have used the relation pr = ∂rR. Furthermore the above equation can also be
written as

Im
∮

prdr = lim
ε→0

{
Im

[∫ rf

ri

E
√
1 − H + √

E2 − m2F
√
H′(r+)F ′(r+)(r − r+ + iε)

dr

+
∫ ri

rf

E
√
1 − H − √

E2 − m2F
√
H′(r+)F ′(r+)(r − r+ − iε)

dr

]}
. (36)

The physical meaning of this integral is that it gives the total spatial contribution and
that’s why we are calculating for a round trip. One can immediately observe from the last
equation that there is no contribution to the imaginary part from the second term. However
this is not a surprising result since we are using Painlevé coordinates and we know that the
particle experiences barrier only from inside the horizon to outside and not the other way.
Now we make use of the equation

lim
ε→0

Im
1

r − r+ ± iε
= πδ(r − r+). (37)

For the imaginary part of the first term we find

Im
∮

prdr = 2πE
√
H′(r+)F ′(r+)

. (38)

Now we have to calculate the temporal contribution. From Eq. 19 the Painlevé coordinate
time reads

T = t +
∫ √

1 − H(r, θ0, φ0, ψ0)√
H(r, θ0, φ0, ψ0) F (r, θ0, φ0, ψ0)

dr. (39)

Substituting this result into the action (25) gives

S0(T , r) = −Et − E

∫ √
1 − H(r, θ0, φ0, ψ0)√

H(r, θ0, φ0, ψ0) F (r, θ0, φ0, ψ0)
dr + R(r). (40)

Therefore for the temporal contribution we find

Im(E
T out,in) = − πE
√
H′(r+)F ′(r+)

. (41)

According to Akhmedova et al [50–53], we can find the resulting tunneling rate by
putting all these results together

� = exp

[
1

�

(
Im(E
T out ) + Im(E
T in) − Im

∮
prdr

)]
(42)

= exp

(
− 4πE

√
H′(r+)F ′(r+)

)
. (43)
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And finally we can find the Hawking temperature by comparing the latter result with the
Boltzmann formula �B = e−E/TH and setting the Planck constant to unity to get

TH =
√
H′(r+)F ′(r+)

4π
(44)

On the other hand, if we consider the expansions of H(r) and F(r) in Taylor’s series
near the horizon given as [40]

H(r) = ∂r� − 2r20 r

r2ρ2

∣∣∣∣∣
r=r+

(r − r+) + . . . (45)

F(r) = (∂r� − 2r20 r) r2ρ2

r40 r4

∣∣∣∣∣
r=r+

(r − r+) + . . . (46)

We recover the correct Hawking temperature for the 5D-MPBH given by

TH = ∂r� − 2r20 r+
4πr20 r2+

. (47)

As expected, this result is in agreement with Eq. 18.

3.2 Tunneling of Scalar Particles

Let us now consider the Klein-Gordon equation in curved spacetime metric (20) for a
massive scalar field � given as follows

1√−G
∂μ

(√−G Gμν∂ν�
)

− m2

�2
� = 0. (48)

In which we have used G = detGμν and m is the mass of the scalar particle. This
equation can be solved by using the semiclassical WKB approximation which allows us to
choose the following ansatz for the scalar field:

�(T , r) = exp

(
i

�
S (T , r)

)
, (49)

where S(T , r) is the classically forbidden action for the tunneling. Inserting the above scalar
field � into the Eq. 48 we end up with the following expression:

1

FH
(∂T S0)

2 = 1

H
(∂rS0)

2 + 2

√
H − 1√
FH

(∂rS0)(∂T S0) + m2. (50)

Choosing the action as (25) and solving for the radial part we get

1

FH
E2 = 1

H
(∂rR)2 − 2E

√
H − 1√
FH

(∂rR) + m2. (51)

From where one can obtain the same result for the radial part as in the last section

R±(r) =
∫ (

E
√

H − 1√
F

±
√

H
√

E2 − m2F√
F

)
dr. (52)
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And we recover the same Hawking temperature of scalar particles

TH = ∂r� − 2r20 r+
4πr20 r2+

. (53)

4 Quantum Tunneling in the Corotating Frame

4.1 Tunneling of Vector Particles

We have shown in the first section that we can eliminate the frame dragging effects on the
tunneling particle by introducing the corotating frame. If we drop the tilda notation in the
metric (11) we find

ds2 = − F(r+, θ)dt2 + H(r+, θ)dr2 + K(r+, θ)dθ2

+ M(r+, θ)dφ2 + N(r+, θ)dψ2 + 2P(r+, θ)dφ dψ, (54)

in which

F(r+, θ) = gtt + gtφ�a + gtψ�b, (55)

H(r+, θ) = r2+ρ2(r+)


(r+)
, (56)

K(r+, θ) = ρ2(r+), (57)

M(r+, θ) =
[
(r2+ + a2) + r20a2 sin2 θ

ρ2

]
sin2 θ, (58)

N(r+, θ) =
[
(r2+ + b2) + r20b2 cos2 θ

ρ2

]
cos2 θ, (59)

P(r+, θ) = a b r20

ρ2
sin2 θ cos2 θ, (60)

Let us now recall again that the PE of the vector field �μ, in the spacetime metric (54)
reads

1√−G
∂μ

(√−G �μν
)

− m2

�2
�ν = 0, (61)

where this time G = detGμν = HKF(MN − P 2). We apply the same method, namely,
we consider the WKB approximation method

�ν = Cν(t, r, θ, φ, ψ) exp

(
i

�
(S0(t, r, θ, φ, ψ) + � S1(t, r, θ, φ, ψ) + . . . .)

)
. (62)

Taking into the consideration the symmetries of the metric (54) given by three corre-
sponding Killing vectors (∂/∂t )

μ, ∂/∂φ)μ and (∂/∂ψ)μ, we may choose the following ansatz
for the action

S0(t, r, θ, φ, ψ) = −(E − (j�a + l�b))t + R(r, θ) + jφ + lψ, (63)
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in which E is the energy of the particle, and j and l are the angular momentum of the
particle corresponding to the angles φ and ψ , respectively. If we now insert the Eq. 62 into
the Eq. 61 and keep only the leading order of � we find the following set of five differential
equations:

0 = ẼR′(r)C1

FH
+ Ẽ(∂θR(r))C2

FK
+

[
(�alj − l(E − l�b))P + ẼjN

]
C3

Fζ

+
[
(�aj

2+(l�b−E)j)P +lẼM
]
C4

Fζ

+
[
Hζ(∂θR)2+K

(
ζ(R′)2+H(−m2P 2−2j lP +(Nm2+l2)M+j2N)

)]
C5

FHζK
, (64)

0 =
[
−Fζ(∂θR)2+

(
(m2F −Ẽ2)P 2 + 2j lFP +((−m2F +Ẽ2)N−F l2)M−FNj2

)
K

]
C1

FHζK

+ (∂θR)R′C2

HK
+ (Nj − lP )R′(r)C3

Hζ
+ (lM − jP )R′(r)C4

Hζ
+ ẼR′C5

FH
, (65)

0 = R′(∂θR)C1

HK

+
[
−Fζ(∂θR)2+

(
(m2F − Ẽ2)P 2+2j lFP +((−m2F +Ẽ)N−F l2)M−FNj2

)
H

]
C2

HFζK

+ (Nj−lP )(∂θR)C3

ζK
+ (lM − jP )(∂θR)C4

ζK
+ Ẽ(∂θR)C5

FK
, (66)

0 = (Nj − lP )R′C1

ζH
+ (Nj − lP )(∂θR)C2

ζK

+
[
−FHN(∂θR)2+

(
−FN(R′)2+H((−m2F +Ẽ2)N−F l2)

)
K

]
C3

ζHKF

+
[
FHP(∂θR)2+

(
FP (R′)2+H((m2F −Ẽ2)P +Fjl)

)
K

]
C4

ζHKF

+ Ẽ(jN−lP )C5

ζF
, (67)

0 = (Ml − jP )(R′)C1

ζH
+ (Ml − jP )(∂θR)C2

ζK

+
[
FHP(∂θR)2 +

(
FP (R′)2 + H((m2F − Ẽ2)P + F lj)

)
K

]
C3

ζHKF

+
[
−FHM(∂θR)2 +

(
−FM(R′)2 + H((−m2F + Ẽ2)M − Fj2)

)
K

]
C4

ζHKF

+ Ẽ(lM − jP )C5

ζF
, (68)
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in which ζ = MN −P 2 and Ẽ = E − (j�a + l�b). From this set of five equations we can
construct a 5 × 5 matrix ℵ, which satisfies the following matrix equation

ℵ(C1, C2, C3, C4, C5)
T = 0. (69)

Using the last equation we find the following non–zero matrix elements:

ℵ11 = ℵ25= ẼR′(r)
FH

,

ℵ12 = ℵ35= Ẽ(∂θR(r))

FK
,

ℵ13 = (�alj−l(E−l�b))P +ẼjN

Fζ
,

ℵ14 = (�aj
2+(l�b−E)j)P +ẼlM

Fζ
,

ℵ15 = Hζ(∂θR)2+K
(
ζ(R′)2+H(−m2P 2−2j lP +(Nm2+l2)M+j2N)

)

FHζK
,

ℵ21 =
−Fζ(∂θR)2+

(
(m2F −Ẽ2)P 2+2j lFP +((−m2F +Ẽ2)N−F l2)M−FNj2

)
K

FHζK
,

ℵ22 = ℵ31= (∂θR)R′

HK
,

ℵ23 = ℵ41= (Nj−lP )R′(r)
Hζ

,

ℵ24 = ℵ51= (lM − jP )R′(r)
Hζ

,

ℵ32 =
−Fζ(∂θR)2+

(
(m2F −Ẽ2)P 2+2j lFP +((−m2F +Ẽ)N−F l2)M−FNj2

)
H

HFζK
,

ℵ33 = ℵ42= (Nj − lP )(∂θR)

ζK
,

ℵ34 = ℵ52 = (lM − jP )(∂θR)

ζK
,

ℵ43 =
−FHN(∂θR)2+

(
−FN(R′)2+H((−m2F +Ẽ2)N−F l2)

)
K

ζHKF
,

ℵ44 = ℵ53=
FHP(∂θR)2+

(
FP(R′)2+H((m2F −Ẽ2)P +Fjl)

)
K

ζHKF
,

ℵ45 = Ẽ(jN−lP )

ζF

ℵ54 =
−FHM(∂θR)2+

(
−FM(R′)2+H((−m2F +Ẽ2)M−Fj2)

)
K

ζHKF

ℵ25 = Ẽ(lM−jP )

ζF
.
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If we solve detℵ = 0, we get the following result

[
−HFζ(∂θR)2+K

(
−Fζ(R′)2+H(((−m2F +Ẽ)N−F l2)M−FNj2−P((−m2F +Ẽ)P −2Fjl))

)]4
m2

H 5F 5ζ 5K5

=0. (70)

We solve for the radial part to get the following integral

R(r)=±
∫

1
√
H′(r+)F ′(r+)

×
√

(E−(j�a +l�b))2−F(r)

[
m2+ 1

MN−P 2

(
Nj2+Ml2−2Pjl

)+ (∂θR)2

K

]
dr. (71)

We can now calculate the Hawking temperature. To do so we can fix the angle θ = θ0,
after that as we know we have to carry out first the spatial part contribution to the imaginary
part of ImR(r) and then the temporal part contribution. The spatial part contribution can be
easily found if we solve the last integral using (37) which leads us to the following result

ImR±(r) = ± πẼ
√
H′(r+, θ0, φ0, ψ0)F ′(r+, θ0, φ0, ψ0)

. (72)

Therefore the spatial contribution to the tunneling rate gives

exp

(
−1

�
Im

∮
prdr

)
= exp

[
−1

�
Im

(∫
p+

r dr −
∫

p−
r dr

)]
(73)

= exp

(
− 2πẼ

√
H′(r+, θ0, φ0, ψ0)F ′(r+, θ0, φ0, ψ0)

)
. (74)

The temporal part contribution comes due to the connection of the interior region and the
exterior region of the black hole. Thus, if one introduces t → t − iπ/(2κ), one will have
Im (Ẽ
tout,in) = −Ẽπ/(2κ). Then the total temporal contribution for a round trip can be
calculated as

Im(Ẽ
tout,in) = −πẼ

κ
, (75)

where the surface gravity is given as follows [40]

κ = lim
r→r+

∂r

√
F(r)√

H(r)
. (76)

Then Eq. 75 takes the form

Im(Ẽ
tout,in) = − 2πẼ
√
H′(r+, θ0, φ0, ψ0)F ′(r+, θ0, φ0, ψ0)

. (77)

The resulting tunneling rate is calculated as

� = exp

[
1

�

(
Im(Ẽ
tout ) + Im(Ẽ
tin) − Im

∮
prdr

)]
(78)

= exp

[
− 4πẼ

√
H′(r+, θ0, φ0, ψ0)F ′(r+, θ0, φ0, ψ0)

]
. (79)
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Comparing this result with the Boltzmann factor e−Ẽ/TH , one gets the correct Hawking
temperature (18)

TH = ∂r� − 2r20 r+
4πr20 r2+

. (80)

4.2 Tunneling of Scalar Particles

The Klein-Gordon equation in curved spacetime metric (54) for a massive scalar field �

reads

1√−G
∂μ

(√−G Gμν∂ν�
)

− m2

�2
� = 0. (81)

We can apply the semiclassical WKB approximation for the scalar field � as follows

�(t, r, θ, φ, ψ) = exp

(
i

�
S (t, r, θ, φ, ψ)

)
. (82)

Then we recover the following equation

1

F
(∂tS)2 = 1

H
(∂rS)2 + 1

K
(∂θS)2 + N

MN − P 2
(∂φS)2

+ M

MN − P 2
(∂ψS)2 − 2P

MN − P 2
(∂φS)(∂ψS) + m2. (83)

Furthermore, we can choose the same form of the action as in the last section

S0(t, r, θ, φ, ψ) = −(E − (j�a + l�b))t + R(r, θ) + jφ + lψ. (84)

Substituting this action into the Eq. 83 yields

1

F
(E − (j�a + l�b))

2 = 1

H
(R′)2 + 1

K
(∂θR)2 + N

MN − P 2
j2

+ M

MN − P 2
l2 − 2P

MN − P 2
j l + m. (85)

Solving for the radial part is not difficult to show that

R(r)=±
∫

1
√
H′(r+)F ′(r+)

×
√

(E−(j�a +l�b))2−F(r)

[
m2+ 1

MN−P 2

(
Nj2+Ml2−2Pjl

)+ (∂θR)2

K

]
dr. (86)

In other words, we have shown that the same black hole temperature can be recovered in
the co-rotating frame

TH = ∂r� − 2r20 r+
4πr20 r2+

. (87)

We therefore conclude that the Hawking temperature for 5D-MPBH is independent of
the selected coordinate system.
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5 Conclusion

In this paper, for 5D-MPBH which has multi-rotation parameters, our results fill in the gap
existing in the literature applying the Hamilton-Jacobi tunneling method. We have inves-
tigated the tunneling effect of the 5D-MPBH with two independent angular momentum
components using the Hamilton-Jacobi method. Furthermore we have calculated the effect
of the rotation on the Hawking radiation of scalar particles and spin-1 vector particles from
the 5D-MPBH. Firstly, we have calculated the Hawking temperature of massive vector and
scalar particles from the 5D-MPBH in the Painlevé coordinates and then in the co–rotating
frame by applying the WKB method and Hamilton-Jacobi equation.

The original Hawking temperature of the 5D-MPBH is impeccably obtained in the both
coordinate systems in full agreement with [39, 40]. Hence the main result is that the Hawk-
ing temperature is independent of the selected coordinate system. Our future project is to
investigate the possible role of quantum horizon fluctuations on the Hawking radiation [55].
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