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Abstract—We study the Hawking radiation of spin-1 particles (so-called vector particles) from a three-dimen-
sional rotating black hole with scalar hair using a Hamilton–Jacobi ansatz. Using the Proca equation in the
WKB approximation, we obtain the tunneling spectrum of vector particles. We recover the standard Hawking
temperature corresponding to the emission of these particles from a rotating black hole with scalar hair.
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1. INTRODUCTION

One of the most radical predictions of general rela-
tivity is the existence of black holes. According to the
seminal works of Hawking [1–3], black holes are not
entirely black. That was the surprising claim made by
Hawking over forty years ago. Examining the behavior
of quantum fluctuations around the event horizon of a
black hole, Hawking substantiated the theory that
black holes emit thermal radiation, with a constant
temperature (so-called Hawking temperature) directly
proportional to the surface gravity κ, which is the grav-
itational acceleration experienced at the black hole
horizon:

 (1)

where the system of units with c = G = kB = 1 is used.
The works of Hawking and Bekenstein [4] and of oth-
ers [5–15], rederiving TH in various ways, bring
together the normally disparate areas: general relativ-
ity, quantum mechanics, and thermodynamics. The
enthusiasm for understanding the underlying coordi-
nations between these subjects of physics creates
ample motivation for the study of Hawking radiation
(see, e.g., [16–27] and references therein).

Quantum fluctuations create a virtual particle pair
near the black hole horizon. While the particle with
negative energy tunnels into the horizon (absorption),
the other, having positive energy, f lies away to the spa-
tial infinity (emission) and produces Hawking radia-
tion. In the WKB approximation for the emission and
absorption probabilities of the tunneling particles, the
tunneling rate Γ is [12, 28, 29]

 (2)

where S is the action of the classically forbidden tra-
jectory of a tunneling particle, which has the net
energy Enet and temperature T. One of the methods for
finding S is the Hamilton–Jacobi method. This
method is generally implemented by substituting a
suitable ansatz, consistent with the symmetries of the
space-time, in the relativistic Hamilton–Jacobi equa-
tion. The resulting radial integral always has a pole
located at the event horizon. However, using the resi-
due theory, the associated pole can be analytically
avoided [30].

Recently, in the framework of the Hamilton–
Jacobi method, the Hawking radiation of spin-1 parti-
cles described by the Proca equation in 3D nonrotating
static black holes was studied by Kruglov [28]. These
spin-1 particles are in fact vector particles like the Z
and W± bosons, and they play a significant role in the
Standard Model [31]. Based on Kruglov’s study [28],
Chen et al. [32] very recently investigated the Hawking
radiation of these bosons in the rotating BTZ geome-
try. Here, similarly to [28, 32], our aim is to study the
Hawking radiation of the vector particles in a three-
dimensional (3D) rotating black hole with the scalar
hairs [33–36]. These black holes are solutions of the
action in 3D Einstein gravity that is nonminimally
coupled to a scalar field ϕ. In the limit ϕ = 0, the rotat-
ing black hole with the scalar hairs is nothing but a
rotating BTZ black hole [33, 37].

This paper is organized as follows. In Section 2, we
introduce the geometrical and thermodynamical fea-
tures of the 3D rotating black hole with the scalar hairs
space-time. In Section 3, we study the Proca equation
for a massive boson in this geometry. We then use the1 The article is published in the original.
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Hamilton–Jacobi method with the separation-of-
variables technique to obtain the Hawking radiation of
the rotating black hole with the scalar hairs. Finally, in
Section 4, we present our remarks.

2. 3D ROTATING BLACK HOLE WITH THE 
SCALAR HAIRS SPACE-TIME

The action in a 3D Einstein gravity with a nonmin-
imally coupled scalar field is given by [33]

 (3)

where the coupling strength ξ between gravity and the
scalar field is 1/8. Furthermore, the scalar potential
V(ϕ) is

 (4)

where the parameters β, B, and a are integration con-
stants, and Λ is the cosmological constant. The line
element of the rotating black hole with the scalar hairs
is given by

 (5)

with the metric functions

 (6)

 (7)

where J is the angular momentum of the black hole.
The scalar field is represented by

 (8)

It is worth noting that the rotating black hole with
the scalar hairs can be reduced to the rotating BTZ
black hole solution when B = 0 [33–36]. Following
[35, 36], we can see that the mass, the Hawking tem-
perature, the Bekenstein–Hawking entropy, and the
angular velocity of the particle at the horizon of this
black hole are given by

 (9)
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where Λ = 1/l2, and r+ is referred to as the event hori-
zon of the black hole. In order to find r+ values, we
impose the condition f(r+) = 0, which yields a particu-
lar cubic equation. The solutions of that cubic equa-
tion are also given in detail in [35]. We can verify that
the first law of thermodynamics

 (13)

holds. On the other hand, calculating the specific heat
using

proves that the rotating black hole with the scalar hairs
is locally stable when r+ > rext. Here, rext is the radius of
an extremal rotating black hole with the scalar hairs
that yields TH = 0 [35].

3. HAWKING RADIATION OF SPIN-1 
PARTICLES FROM AN ROTATING BLACK 

HOLE WITH THE SCALAR HAIRS

As described in [28], the Proca equation for mas-
sive vector particles having the wave function Φ is

 (14)

where

 (15)

We choose the vector function in the form

 (16)

and assume that the action is given by

 (17)

According to the WKB approximation, we can fur-
ther set

 (18)

where E and j are the energy and angular momentum
of the spin-1 particles, and  is a (complex) constant.
Substituting Eqs. (15)–(18) in Eq. (14) and consider-
ing the leading order in , we obtain an equation for a
3 × 3 matrix, denoted by Ξ: Ξ(c1, c2, c3)T = 0 (the
superscript T means the transposition). The nonzero
components of Ξ are
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 (19)

where

 (20)

 (21)
Using the fact that any homogeneous system of lin-

ear Eqs. (19) admits a nontrivial solution if and only if
detΞ = 0, we obtain

 (22)

Solving for +(r) yields

 (23)

We can immediately see that when ω(r) = 0, this
reduces to Kruglov’s solution [28]. Here, ++ corre-
sponds to outgoing spin-1 particles (moving away
from the black hole) and +– to the ingoing spin-1 par-
ticles (moving towards the black hole). The imaginary
part of +±(r) can be calculated by using the pole devel-
oped at the horizon. According to the complex path
integration method via Feynman’s prescription [30]
(see [12] for a similar process), we have

 (24)

where

 (25)
Therefore, the probabilities of the vector particles

crossing the horizon in the in- and out-directions
become

 (26)

 (27)

According to the classical definition of a black
hole, any outside particle certainly falls onto the black
hole. Therefore, we must have Pabsorption = 1, which
yields Im  = Im +–. On the other hand, ++ = –+–,
and hence the total probability of radiating particles
(as a consequence of quantum mechanics) is
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Comparing Eq. (28) with Eq. (2) we can recover
the correct Hawking temperature (10) of a rotating
black hole with the scalar hairs:

 (29)

4. CONCLUSIONS
We have used the Proca equation to compute the

tunneling rate of outgoing vector particles across the
event horizon of an axially symmetric static rotating
3D rotating black hole with the scalar hairs. For this
purpose, we have ignored the back-reaction effects
and substituted the Hamilton–Jacobi ansatz in the
associated Proca equations. In deriving the tunneling
rate in the framework of the WKB approximation, the
calculation of the imaginary part of the action was the
most important point. Using the complex path inte-
gration technique, we have shown that the tunneling
rate is given by Eq. (26). This result allows us to
recover the standard Hawking temperature for a rotat-
ing black hole with the scalar hairs.

Finally, studying vector particles in higher-dimen-
sional black holes may reveal more information com-
pared to the present case.
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