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In this paper, we study the deflection of light by a class of charged wormholes within the context of the
Einstein-Maxwell-dilaton theory. The primordial wormholes are predicted to exist in the early universe,
where inflation is driven by the dilaton field. We perform our analysis through optical geometry using
the Gibbons-Werner method (GW) by adopting the Gauss-Bonnet theorem and the standard geodesics
approach. We report an interesting result for the deflection angle in leading-order terms—namely, the
deflection angle increases due to the electric charge Q and the magnetic charge P, whereas it decreases
due to the dilaton charge Σ. Finally, we confirm our findings by means of geodesics equations. Our
computations show that the GW method gives an exact result in leading-order terms.
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I. INTRODUCTION

An important finding of Einstein’s theory of relativity is
that light rays are deflected by a gravitational field. Einstein
calculated that the deflection predicted by his theory would
be twice the Newtonian value. During a total solar eclipse
in 1919, Eddington performed the first experimental test
of GR [1]. Gravitational lensing is a powerful tool of
astrophysics and cosmology that can be used to measure
the mass of galaxies and clusters and to detect dark matter
[2]. Now, a century later, we have calculated the deflection
angle of light deflected by charged wormholes (CW) within
the context of the Einstein-Maxwell-dilaton (EMD) theory,
using the Gauss-Bonnet theorem (GBT).
Since the big bang, the Universe has been expanding

and cooling down while remaining uniform and isotropic.
There is a phase transition in the cooling time, related to the
breaking of the symmetry, that causes topological defects.
It is assumed that inflation is driven by the scalar field,
namely the inflaton [3]. Moreover, typical dilaton fields
are also quite suitable for producing the correct value of
the slow-roll of the inflation. On the other hand, string
cosmologists believe they can solve this issue by using the
kinetic part of a dilaton field and it causes the Universe to
expand from a flat, cold, and weakly coupled unstable
initial vacuum state toward a curved, dilaton-driven, strong
coupling regime which is called the pre-Big-Bang phase
[4–7]. Furthermore, the solutions of the classical black

holes and wormholes can exist in the development of EMD
theory [8].
The wormholes solutions represent a shortcut between

the points of two parallel universes or, two different points
of the same universe. Those objects are among the most
intriguing and intensively studied topics in general rela-
tivity [9,10]. In brief, traversable wormholes are supported
within the context of general relativity by matter with
stress-energy tensor that violates the null energy condition
and, according to which, exotic matter is required in order
to keep the throat of the wormholes open. Actually, the
wormhole solutions violate all the energy conditions [10].
The idea of a wormhole can be traced back to Flamm, who
first proposed the wormhole idea in 1916, just after the
discovery of Schwarzschild’s black hole solution. Then, in
1935, Einstein and Rosen introduced a bridgelike structure
between black holes (today known as the Einstein-Rosen
bridge) in order to obtain a regular solution without any
singularities [11]. However, the term wormhole was coined
by Wheeler in 1957 [12,13]. The modern interest in a
traversable wormhole was stimulated particularly by the
pioneering works of Morris, Thorne, and Yurtsever [9,14].
Traversable wormholes, in this sense, are described as
having throats that connect two asymptotically flat regions
of spacetime. Discussions revolve around the physical
conditions required for traversable wormholes within the
context of general relativity. Nowadays, the most challeng-
ing problem in classical gravitational physics is to construct
a traversable and a stable wormhole solution with ordinary
matter. There are well-known examples of wormholes such
as classical, minimally coupled, massless scalar field,
and electric charge, as reported in the literature [15–17].
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Moreover, Goulart [18] has recently obtained zero-mass
pointlike solutions that arise from the dyonic black hole
solution of EMD theory. This shows that, from the
nonextremal solution, it is possible to construct a static
CW solution that satisfies the null energy condition.
Nowadays, the applications of the strong/weak gravita-

tional lensing by wormholes are a very active area of
research. From an observational point of view, gravitational
lensing is an important window into the probing of
wormholes, and the trajectory of an Ellis wormhole light
ray was investigated by Ellis in [19]. Afterwards, the
deflection angle of the Ellis wormhole spacetime has been
calculated by Chetouani and Clement [20]. In a recent
paper, Tsukamoto and Harada [21] studied the light curve
of a light ray that passes through the throat of a traversable
wormhole. Additionally, they showed that gravitational
lensing can be used as a probe to distinguish between
wormholes and black holes [22,23]. Due to importance of
this problem, various articles, such as [24–32], have studied
gravitational lensing by wormholes.
Gibbons and Werner recently showed, using the example

of light deflection from a Schwarzschild–de Sitter black
hole [33] that the angle of light deflection can be calculated
using the GBT. This method relies on the fact that the
deflection angle can be calculated using a domain outside
of the light ray. It is known that the effect of lensing
strongly depends on the mass of the enclosed region body
on spacetime. The GBT simply glues surfaces together.
One must first use the Euler characteristic of χ and a
Riemannian metric of g. The subset-oriented surface
domain of ðD; χ; gÞ is chosen to calculate the Gaussian
curvature of K, so that the GBT is found as follows:Z Z

D
KdSþ

Z
∂D

κdtþ
X
i

αi ¼ 2πχðDÞ. ð1Þ

Here, κ stands for the geodesics curvature of ∂D∶ ftg → D,
and αi is the exterior angle with the ith vertex.
Werner extended the GBT to the stationary spacetimes

by given the example of the Kerr deflection angle to the
osculating Riemannian metric [34]. This technique is for
asymptotically flat observers and sources. The resulting
deflection angle is expected to be too small, which is also a
joint point in astronomy. In this paper, we will use the
extended geometricmethod; similar to theworks ofGibbons
and Werner. In this method, Riemannian metric manifolds
are global symmetric lenses. First, we will calculate the
Gaussian curvature ofK in an optical geometry to obtain the
asymptotic deflecting angle of alpha:

α̂ ¼ −
Z Z

D∞

KdS: ð2Þ

Note that we use the infinite region of the surface D∞
bounded by the light ray to calculate our integral. To obtain

the deflection angle of the light, we use the zero-order
approximation of the light ray, and the deflection angle
of α̂ is obtained in leading-order terms. Following seminal
papers of Gibbons and Werner, many other studies
appeared in the literature such as the deflection angle in
spacetimes with topological defects, including cosmic
strings and global monopoles, quantum effects on the
deflection of light by quantum-improved Schwarzschild
black holes [35,36], and gravitational effects due to a
cosmic string in Schwarzschild spacetime [37]. Moreover,
using the GBT on the Rindler-modified Schwarzschild
black hole, Sakalli and Övgün recently showed the deflec-
tion angle at the infrared region [38]. The method of
calculating the bending angle of light using the GBT has
been extensively studied in [39–41].
In this present work, our goal is to apply the GBT to

calculate the angle of light deflection by massless CW. The
paper is organized as follows: in Sec. II, we review the
wormhole solution as presented in EMD theory. In Sec. III,
we consider the deflection angle of light in a CW geometry
in the weak-limit approximation using the GBT. In Sec. IV,
we explore geodesics equations to recover the deflection
angle. Finally, we draw our conclusions in Sec. V.
Throughout this paper, we will be using natural units,
i.e., G ¼ c ¼ ℏ ¼ 1.

II. DYONIC WORMHOLES IN THE
EINSTEIN-MAXWELL-DILATON THEORY

In this section, we review briefly the solution of the
dyonic wormholes in the EMD theory [8,18]. Let us firstly
consider the simplest action, which can be written as
follows (adopting geometrized units and henceforth,
16πG ¼ 1):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2∂μϕ∂μϕ −WðϕÞFμνFμνÞ; ð3Þ

where R denotes the Ricci scalar, ϕ is the dilaton scalar
field, and Fμν represents the electromagnetic field strength,
which is given by

Fμν ¼ ∂μAν − ∂νAμ: ð4Þ

Now, considering the equations of motion for the metric,
dilaton, and gauge fields, and then Bianchi identities arising
from the action (3):

Rμν ¼ 2∂μϕ∂νϕ−
1

2
gμνWðϕÞFρσFρσ þ 2WðϕÞFμρF

ρ
ν; ð5Þ

∇μð∂μϕÞ − 1

4

∂WðϕÞ
∂ϕ FμνFμν ¼ 0; ð6Þ

∇μðWðϕÞFμνÞ ¼ 0; ð7Þ
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∇½μFρσ� ¼ 0: ð8Þ

For the sake of generality, we shall consider WðϕÞ ¼
e−2ϕ [8], following this, we obtain the bosonic sector SUð4Þ
version of N ¼ 4, per the supergravity theory for a constant
axion field. A doubly charged black hole solution has
been found in the bosonic sector of N ¼ 4, d ¼ 4 super-
gravity [42], given a static, axially symmetric spacetime.
Moreover, rotating dyonic black holes of N ¼ 4, SOð4Þ-
gauged supergravity have been considered in [43]. Now, we
are interested in a dyonic black hole of N ¼ 4 to the SUð4Þ
supergravity theory in terms of the integration constants, so
we choose a spherically symmetric metric, expressed as [8]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ hðrÞdΩ2

2; ð9Þ

where dΩ2
2 ¼ dθ2 þ sin2 θdϕ2 denotes the line element of

the unit 2-sphere and the metric functions are

fðrÞ ¼ ðr − r1Þðr − r2Þ
ðrþ d0Þðrþ d1Þ

;

hðrÞ ¼ ðrþ d0Þðrþ d1Þ; ð10Þ

e2ϕ ¼ e2ϕ0
rþ d1
rþ d0

; ð11Þ

Frt ¼
e2ϕ0Q

ðrþ d0Þ2
; Fθϕ ¼ P sin θ; ð12Þ

where P is the magnetic charge,Q is the electric charge, the
value of the dilaton at infinity is ϕ0, with four integrating
constant r1, r2, d0 and d1.
Now, we are interested in a massless pointlike dyonic

solution. Nevertheless, for this purpose, we consider the
case when d1 ¼ −d0 ¼ −Σ and r1 ¼ −r2 ≡ rH, to get the
following relation [8]:

e2ϕ0 ¼ � P
Q
: ð13Þ

As suggested by Goulart in [8], we only consider the
case of a negative sign, as a positive solution does not
correspond to the massless solution obtained by EMD
theory. In this physical situation, considering the negative
sign in Eq. (13), the nonextremal solutions from Eqs. (10)–
(12) can be explicitly written as

fðrÞ ¼ ðr − rþÞðr − r−Þ
ðr2 − Σ2Þ ; hðrÞ ¼ ðr2 − Σ2Þ; ð14Þ

e2ϕ ¼ −
P
Q

�
r − Σ
rþ Σ

�
; ð15Þ

Frt ¼ −
P

ðrþ ΣÞ2 ; Fθϕ ¼ P sin θ: ð16Þ

The horizon and singularity are located at

rþ ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2 þ 2QP

p
; rS ¼ jΣj; ð17Þ

which excludes the inner horizon, and the area of the two-
sphere shrinks to zero at rS. The main importance of this
solution is that the massless solution seems physically
acceptable, even with a complex dilaton field at infinity.
Given the above results and the full massless nonex-

tremal solution (14), one must choose the negative sign in
Eq. (13) with the constants d1 ¼ −d0 ¼ −Σ. Following this
method, the obtained metric is [18]

ds2 ¼ −
�

r2

r2 þ 2PQ

�
dt2 þ

�
r2 þ 2PQ

r2 þ Σ2 þ 2PQ

�
dr2

þ ðr2 þ 2QPÞðdθ2 þ sin2θdφ2Þ: ð18Þ

The above metric represents the CW in the EMD theory,
which can be obtained from massless nonextremal dyonic
solutions. It is worth noting that by letting Σ ¼ 0, the radius
of the throat is found to be Rthro: ¼

ffiffiffiffiffiffiffiffiffiffi
2PQ

p
[18].

Next, we study the deflection of light produced by a CW
geometry within the context of the EMD theory.

III. WEAK DEFLECTION LIMIT WITH GBT

A. Gaussian optical curvature

Let us use the Goulart’s wormhole solution given in
Eq. (18) by considering the null geodesic ds2 ¼ 0, with the
deflection angle of light in the equatorial plane θ ¼ π=2, we
obtain the optical metric of CW as follows:

dt2 ¼ ðr2 þ 2PQÞ2
r2ðr2 þ Σ2 þ 2PQÞ dr

2 þ ðr2 þ 2PQÞ2
r2

dφ2: ð19Þ

Now, we introduce a radial Regge-Wheeler tortoise-type
coordinate r⋆, with a new function fðr⋆Þ as follows

dr⋆ ¼ r2 þ 2PQ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ Σ2 þ 2PQ

p dr;

fðr⋆Þ ¼ ðr2 þ 2PQÞ
r

: ð20Þ

Then, the above metric becomes

dt2 ¼ ~gabdxadxb ¼ dr⋆2 þ f2ðr⋆Þdφ2: ða; b ¼ r;φÞ:
ð21Þ

The above optical metric has two nonzero Christoffel
symbols:

~Γr
φφ ¼ 4P2Q2 − r4

r3
; ð22Þ
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~Γφ
rφ ¼ r2 − 2PQ

rðr2 þ 2PQÞ : ð23Þ

Note that we have used the approximation dr⋆ ≈ dr in
the last two equations, which is convenient in our setup for
a very large r. It is straightforward to compute the Gaussian
optical curvature K, which can be calculated by the
following equation [33]:

K ¼ −
1

fðr⋆Þ
d2fðr⋆Þ
dr⋆2

¼ −
1

fðr⋆Þ
�
dr
dr⋆

d
dr

�
dr
dr⋆

�
df
dr

þ
�
dr
dr⋆

�
2 d2f
dr2

�
: ð24Þ

Using the Eq. (21) the Gaussian optical curvature for
Goulart’s wormhole gives

K ¼ −
6PQr4 þ 8PQΣ2r2 − r4Σ2 þ 8P3Q3 þ 16P2Q2r2 þ 4P2Q2

ð2PQþ r2Þ4 : ð25Þ

Since we are interested in the weak limit, we can
approximate the optical Gaussian curvature as

K ≈ −
16PQ
r4

þ Σ2

r4
−
16PQΣ2

r6
þ 32P2Q2

r6
: ð26Þ

Later on, we shall use this important result together with
the GBT to find the deflection angle in the following
section.

B. Deflection angle

Having calculated the Gaussian optical curvature, we use
this relationship and apply the GBT to the optical geometry
of the Goulart’s wormhole. Let us choose a nonsingular
region DR with boundary ∂DR ¼ γ ~g∪CR, which allows the
GBT to be stated as follows [33],Z Z

DR

KdSþ
I
∂DR

κdtþ
X
i

θi ¼ 2πχðDRÞ; ð27Þ

in which κ gives the geodesic curvature, K stands for the
Gaussian optical curvature, while θi is the exterior angle at
the ith vertex. It is seen from Fig. 1 that we can choose a

nonsingular domain outside of the light ray with the Euler
characteristic number χðDRÞ ¼ 1.
In order to find the deflection angle, let us first compute

the geodesic curvature using the following relation,

κ ¼ ~gð∇_γ _γ; ̈γÞ; ð28Þ

together with the unit speed condition ~gð_γ; _γÞ ¼ 1, where γ̈
gives the unit acceleration vector. If we let R → ∞, our two
jump angles (θO, θS) become π=2, or in other words, the
sum of jump angles to the source S, and observer O,
satisfies θO þ θS → π [33]. Hence, we can write GBT asZ Z

DR

KdSþ
I
CR

κdt ¼R→∞
Z Z

D∞

KdSþ
Z

πþα̂

0

dφ ¼ π:

ð29Þ

Let us now compute the geodesic curvature κ. To do so,
we first point out that κðγ ~gÞ ¼ 0, since γ ~g is a geodesic. We
are left with the following,

κðCRÞ ¼ j∇ _CR
_CRj; ð30Þ

where we choose CR ≔ rðφÞ ¼ R ¼ const. The radial part
is evaluated as

ð∇ _CR
_CRÞr ¼ _Cφ

Rð∂φ
_Cr
RÞ þ ~Γr

φφð _Cφ
RÞ2: ð31Þ

From the last equation, it is obvious that the first term
vanishes, while the second term is calculated using Eq. (23)
and the unit speed condition. For the geodesic curvature,
we find

lim
R→∞

κðCRÞ ¼ lim
R→∞

j∇ _CR
_CRj;¼ lim

R→∞

�
R2 − 2PQ
R3 þ 2PQR

�
;→

1

R
:

ð32Þ

On the other hand, for very large radial distance, Eq. (20)
yields

FIG. 1. Deflection angle of light in the wormhole geometry in
the equatorial plane ðr;φÞ. In our setup, b is the impact parameter
and can be approximated as the distance of the closest approach
rmin of the light trajectory from the coordinate origin located at
the center of the wormhole. The radius of the throat Rthro.. is
negligible compared to the impact parameter b.
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lim
R→∞

dt ¼ lim
R→∞

�
R2 þ 2PQ

R

�
dφ → Rdφ: ð33Þ

If we combine the last two equations, we find
κðCRÞdt ¼ dφ. It is convenient to choose the deflection
line as r ¼ b= sinφ, in which case, the deflection angle
from Eq. (30) can be recast in the following from:

α̂ ¼ −
Z

π

0

Z
∞

b
sinφ

KdS: ð34Þ

If we substitute Eq. (26) into the last equation, this yields
the following integral:

α̂ ¼ −
Z

π

0

Z
∞

b
sinφ

�
−
16PQ
r4

þ Σ2

r4
−
16PQΣ2

r6
þ 32P2Q2

r6

�

×
ffiffiffiffiffiffiffiffiffi
det ~g

p
drdφ: ð35Þ

Note that we use the following relation dr⋆ ≈ dr, valid in
the limit as R → ∞. One can easily solve this integral in the
leading-order terms to find the following result:

α̂≃ 3πPQ
2b2

−
πΣ2

4b2
þOðP2; Q2;Σ2Þ: ð36Þ

It is worth noting that we use a straight-line approxi-
mation to evaluate the integral (35); therefore, we expect
that only the first-order terms should be valid in our setup.
However, Eq. (34) gives an exact expression for the
deflection angle when integrated over the domain D∞.
But, in principle, if we use an appropriate equation for the
light ray r which includes higher-order terms of P, Q, and
Σ, one should recover the second-order correction terms by
carrying out the integration over the domain D∞.

IV. GEODESIC EQUATIONS

In this section, we further show that one can indeed
reach the same result (36) by using the standard geodesic
approach. To do so, we recall that the variational principle
stated as follows:

δ

Z
Lds ¼ 0: ð37Þ

When we apply it to our wormhole spacetime metric
(18), the Lagrangian reads

2L ¼ −
r2ðsÞ_t2ðsÞ

r2ðsÞ þ 2PQ
þ ðr2ðsÞ þ 2PQÞ_r2ðsÞ

r2ðsÞ þ Σ2 þ 2PQ

þ ðr2ðsÞ þ 2PQÞ _φ2ðsÞ: ð38Þ

Note that we have three cases, namely L being
þ1; 0;−1, for timelike, null, and spacelike geodesics,

respectively. Without loss of generality, we consider the
deflection of planar photons i.e. θ ¼ π=2. After using the
spacetime symmetries, one should consider two constants
of motion l and γ, given as follows [44]:

pφ ¼ ∂L
∂ _φ ¼ 2ðr2ðsÞ þ 2PQÞ _φðsÞ ¼ l; ð39Þ

pt ¼
∂L
∂_t ¼ −

2r2ðsÞ_tðsÞ
r2ðsÞ þ 2PQ

¼ −γ: ð40Þ

Let us now introduce a new variable uðφÞ, which is
related to our old radial coordinate as follows r ¼ 1=uðφÞ
and hence we obtain the following identity:

_r
_φ
¼ dr

dφ
¼ −

1

u2
du
dφ

: ð41Þ

Without loss of generality, we can normalize the affine
parameter along the light rays by taking γ ¼ 1 [44] and
approximate the distance of closest approach with the
impact parameter, i.e., umax ¼ 1=rmin ¼ 1=b, since we shall
consider only leading-order terms [45]. In this case, one can
choose the second constant of motion as follows:

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΞðP;QÞ
2PQþ b2

s
b2; ð42Þ

where

ΞðP;QÞ ¼ 12P2Q2

b4
þ 6PQ

b2
þ 1: ð43Þ

We see from the last two equations that if we take the
limit P ¼ Q ¼ Σ ¼ 0, then l ¼ b. Finally, using Eqs. (39),
(42), (43), in terms of uðφÞ, we find the following equation:

�
du
dφ

�
2
�

2PQu2 þ 1

ð2PQþ Σ2 þ 1
u2Þu6

�

þ 1

u2
−
u2ð2PQb2 þ 1Þð 1u4 þ 4PQ

u2 þ 4P2Q2Þ2
Ξb2ð2PQþ 1

u2Þ
þ 2PQ ¼ 0: ð44Þ

One way to solve this equation is to use a perturbation
method. Note that setting P ¼ Q ¼ Σ2 ¼ 0, and then
performing a differentiation, yields the expected results:

d2u0
dφ2

þ u0 ¼ 0: ð45Þ

It is well known that the solution of the differential
equation (45) is given by the following relation [44,46],
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Δφ ¼ π þ α̂; ð46Þ

where α̂ is the deflection angle to be calculated. Following
the same arguments given in Ref. [46], the deflection angle
can be calculated as

α̂ ¼ 2jφðumaxÞ − φ∞j − π; ð47Þ

where

φ ¼
Z

1=b

0

AðP;Q;Σ2; uÞdu: ð48Þ

Note that, in the last equation, AðP;Q;Σ2; uÞ is calcu-
lated by considering Taylor expansion series around Q, P,
and Σ2, given by

AðuÞ ¼ −
15b2ðbu − 1Þ2ðbuþ 1Þ2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−b8u2 þ b6

p
ðb2u2 − 1Þ2

��
−

4

15
þ P2Q2u6Σ2 −

2PQ
5

ðPQþ Σ2Þu4

þ
�
4PQ
15

þ 2Σ2

15

�
u2
�
b2 −

1

15
ð8PQu4Σ2 − 4Σ2u2 þ 8ÞQP

�
: ð49Þ

As expected, the deflection angle in the weak limit
approximation is found to be the same result found by GBT

α̂≃ 3πPQ
2b2

−
πΣ2

4b2
þOðP2; Q2;Σ2Þ: ð50Þ

As we have pointed out, these equations agree only
for the first-order terms while the agreement between
these methods breaks down for the second-order correction
terms.

V. CONCLUSION

In this paper, we studied gravitational lensing by a CW
geometry within the context of the EMD theory. Adopting
the weak deflection limit, we calculated the deflection
angle and found the deflection angle is affected by the
magnetic charge, electric charge, and the dilaton charge. In
particular, the magnetic and electric charges increase the
deflection angle. On the other hand, the dilaton charge
decreases the deflection angle. To obtain these results, we
used two different approaches: the GW method and
geodesic equations. In the first method, we have applied
the GBT to optical geometry of the Goulart’s wormhole in
the equatorial plane. We first calculated the Gaussian
optical curvature by integrating over a nonsingular domain
outside the light ray. The first important finding is that the
GW method gives an exact result in leading-order terms;
whereas the second important result emphasizes the role of
global topology in the lensing effect.
In addition, it is now known from current observations

that the Universe began at extremely high temperatures.

This is called the hot big bang model. When the Universe
expanded adiabatically at an accelerated rate, it cooled
down, and as a consequence of cosmological phase
transitions in the early universe cosmological defects were
produced [47–49]. These cosmological defects may lead to
the formation of wormholes. The nature of the wormhole
formations that occurred in the early universe may be
detected using weak lensing observations. The relationship
between weak lensing and quasinormal modes (QNMs) is
also important because it extends the theorem of Hod [50]
to the theories of Einstein-Gauss-Bonnet and shows that in
the WKB limit, there is an universal upper bound for the
real part of the QNMs. On the other hand, in the strong
lensing regime, there is an universal lower bound on black
holes [51]. Studying of weak gravitational lensing also
provide possible evidences for the validity of the cosmic
censorship conjecture (CCC) [52]. Moreover, the astro-
physical importance of gravitational lensing and geodesics
studies has given us an interest in working on a proof of the
Hod’s conjecture for wormholes [50]. We will leave for
future work the consideration of the second-order correc-
tion terms in the GW method in the weak lensing limit, as
well as the strong limit with QNM in the wormhole
spacetimes.

ACKNOWLEDGMENTS

This work was supported by the Chilean FONDECYT
Grant No. 3170035 (AÖ). A. B. is thankful to the authority
of the Inter-University Centre for Astronomy and
Astrophysics, Pune, India, for providing research facilities.

KIMET JUSUFI, ALI ÖVGÜN, and AYAN BANERJEE PHYSICAL REVIEW D 96, 084036 (2017)

084036-6



[1] M. Longair, Phil. Trans. R. Soc. A 373, 20140287 (2015).
[2] R. Massey, T. Kitching, and J. Richard, Rep. Prog. Phys. 73,

086901 (2010).
[3] L. V. Zadorozhna, B. I. Hnatyk, and Y. A. Sitenko, UJP 58,

398 (2013).
[4] S. Nojiri, O. Obregon, and S. D. Odintsov, Mod. Phys. Lett.

A 14, 1309 (1999).
[5] G.W. Gibbons and C. G. Wells, Classical Quantum Gravity

11, 2499 (1994).
[6] B. Kleihaus, J. Kunz, and E. Radu, Phys. Lett. B 660, 386,

386 (2008).
[7] M. H. Dehghani, A. Sheykhi, and S. H. Hendi, Phys. Lett. B

659, 476 (2008).
[8] P. Goulart, arXiv:1611.03093.
[9] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).

[10] M. Visser, Lorentzian Wormholes: From Einstein to Hawk-
ing (American Institute of Physics, New York, 1995).

[11] A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935).
[12] J. A. Wheeler, Phys. Rev. 97, 511 (1955).
[13] R. W. Fuller and J. A. Wheeler, Phys. Rev. 128, 919 (1962).
[14] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. D

61, 1446 (1988).
[15] F. S. N. Lobo, Phys. Rev. D 71, 124022 (2005).
[16] S. Sushkov, Phys. Rev. D 71, 043520 (2005).
[17] R. Garattini, Classical Quantum Gravity 22, 1105 (2005).
[18] P. Goulart, arXiv:1611.03164.
[19] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[20] L. Chetouani and G. Clement, Gen. Relativ. Gravit. 16, 111

(1984).
[21] N. Tsukamoto and T. Harada, Phys. Rev. D 95, 024030

(2017).
[22] N. Tsukamoto, T. Harada, and K. Yajima, Phys. Rev. D 86,

104062 (2012).
[23] N. Tsukamoto and T. Harada, Phys. Rev. D 87, 024024

(2013).
[24] A. Bhattachary and A. Potapov, Mod. Phys. Lett. A 25,

2399 (2010).
[25] T. K. Dey and S. Sen, Mod. Phys. Lett. A 23, 953 (2008).
[26] K. K. Nandi, Y. Zhang, and A. V. Zakharov, Phys. Rev. D

74, 024020 (2006).
[27] K. Nakajima and H. Asada, Phys. Rev. D 85, 107501

(2012).

[28] C. Yoo, T. Harada, and N. Tsukamoto, Phys. Rev. D 87,
084045 (2013).

[29] C. Barcelo and M. Visser, Phys. Lett. B 466, 127 (1999).
[30] N. Tsukamoto, Phys. Rev. D 94, 124001 (2016).
[31] V. Perlick, Phys. Rev. D 69, 064017 (2004).
[32] K. Jusufi, Int. J. Geom. Methods Mod. Phys. 14, 1750179

(2017).
[33] G.W. Gibbons and M. C. Werner, Classical Quantum

Gravity 25, 235009 (2008).
[34] M. C. Werner, Gen. Relativ. Gravit. 44, 3047 (2012).
[35] K. Jusufi, M. C. Werner, A. Banerjee, and A. Ovgun, Phys.

Rev. D 95, 104012 (2017).
[36] K. Jusufi, Eur. Phys. J. C 76, 332 (2016); K. Jusufi,

Astrophys. Space Sci. 361, 24 (2016); K. Jusufi, Int. J.
Geom. Methods Mod. Phys. 14, 1750137 (2017).

[37] K. Jusufi, I. Sakalli, and A. Ovgun, Phys. Rev. D 96,
024040, 2017.

[38] I. Sakalli and A. Ovgun, Europhys. Lett. 118, 60006
(2017).

[39] A. Ishihara, Y. Suzuki, T. Ono, T. Kitamura, and H. Asada,
Phys. Rev. D 94, 084015 (2016).

[40] A. Ishihara, Y. Suzuki, T. Ono, and H. Asada, Phys. Rev. D
95, 044017 (2017).

[41] T. Ono, A. Ishihara, and H. Asada, arXiv:1704.05615.
[42] M. Rogatko, Phys. Rev. D 59, 104010 (1999).
[43] A. Das, M. Fischler, and M. Rocek, Phys. Rev. D 16, 3427

(1977).
[44] R. H. Boyer and R.W. Lindquist, J. Math. Phys. (N.Y.) 8,

265 (1967).
[45] L. Iorio, Nuovo Cimento Soc. Ital. Fis. B 118, 249 (2003).
[46] S. Weinberg, Gravitation and Cosmology (Wiley, New York,

1972).
[47] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[48] M. B. Hindmarsh and T.W. B. Kibble, Rep. Prog. Phys. 58,

477 (1995).
[49] S. Saga, K. Horiguchi, and K. Ichik, Phys. Rev. D 95,

123524 (2017).
[50] S. Hod, Phys. Lett. B 727, 345 (2013).
[51] E. Gallo and J. R. Villanueva, Phys. Rev. D 92, 064048

(2015).
[52] M. C. Werner and A. O. Petters, Phys. Rev. D 76, 064024

(2007).

LIGHT DEFLECTION BY CHARGED WORMHOLES IN … PHYSICAL REVIEW D 96, 084036 (2017)

084036-7

https://doi.org/10.1098/rsta.2014.0287
https://doi.org/10.1088/0034-4885/73/8/086901
https://doi.org/10.1088/0034-4885/73/8/086901
https://doi.org/10.1142/S0217732399001401
https://doi.org/10.1142/S0217732399001401
https://doi.org/10.1088/0264-9381/11/10/009
https://doi.org/10.1088/0264-9381/11/10/009
https://doi.org/10.1016/j.physletb.2008.01.027
https://doi.org/10.1016/j.physletb.2008.01.027
https://doi.org/10.1016/j.physletb.2007.11.015
https://doi.org/10.1016/j.physletb.2007.11.015
http://arXiv.org/abs/1611.03093
https://doi.org/10.1119/1.15620
https://doi.org/10.1103/PhysRev.48.73
https://doi.org/10.1103/PhysRev.97.511
https://doi.org/10.1103/PhysRev.128.919
https://doi.org/10.1103/PhysRevD.71.124022
https://doi.org/10.1103/PhysRevD.71.043520
https://doi.org/10.1088/0264-9381/22/6/012
http://arXiv.org/abs/1611.03164
https://doi.org/10.1063/1.1666161
https://doi.org/10.1007/BF00762440
https://doi.org/10.1007/BF00762440
https://doi.org/10.1103/PhysRevD.95.024030
https://doi.org/10.1103/PhysRevD.95.024030
https://doi.org/10.1103/PhysRevD.86.104062
https://doi.org/10.1103/PhysRevD.86.104062
https://doi.org/10.1103/PhysRevD.87.024024
https://doi.org/10.1103/PhysRevD.87.024024
https://doi.org/10.1142/S0217732310033748
https://doi.org/10.1142/S0217732310033748
https://doi.org/10.1142/S0217732308025498
https://doi.org/10.1103/PhysRevD.74.024020
https://doi.org/10.1103/PhysRevD.74.024020
https://doi.org/10.1103/PhysRevD.85.107501
https://doi.org/10.1103/PhysRevD.85.107501
https://doi.org/10.1103/PhysRevD.87.084045
https://doi.org/10.1103/PhysRevD.87.084045
https://doi.org/10.1016/S0370-2693(99)01117-X
https://doi.org/10.1103/PhysRevD.94.124001
https://doi.org/10.1103/PhysRevD.69.064017
https://doi.org/10.1142/S0219887817501791
https://doi.org/10.1142/S0219887817501791
https://doi.org/10.1088/0264-9381/25/23/235009
https://doi.org/10.1088/0264-9381/25/23/235009
https://doi.org/10.1007/s10714-012-1458-9
https://doi.org/10.1103/PhysRevD.95.104012
https://doi.org/10.1103/PhysRevD.95.104012
https://doi.org/10.1140/epjc/s10052-016-4185-7
https://doi.org/10.1007/s10509-015-2609-8
https://doi.org/10.1142/S0219887817501377
https://doi.org/10.1142/S0219887817501377
https://doi.org/10.1103/PhysRevD.96.024040
https://doi.org/10.1103/PhysRevD.96.024040
https://doi.org/10.1209/0295-5075/118/60006
https://doi.org/10.1209/0295-5075/118/60006
https://doi.org/10.1103/PhysRevD.94.084015
https://doi.org/10.1103/PhysRevD.95.044017
https://doi.org/10.1103/PhysRevD.95.044017
http://arXiv.org/abs/1704.05615
https://doi.org/10.1103/PhysRevD.59.104010
https://doi.org/10.1103/PhysRevD.16.3427
https://doi.org/10.1103/PhysRevD.16.3427
https://doi.org/10.1063/1.1705193
https://doi.org/10.1063/1.1705193
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0034-4885/58/5/001
https://doi.org/10.1088/0034-4885/58/5/001
https://doi.org/10.1103/PhysRevD.95.123524
https://doi.org/10.1103/PhysRevD.95.123524
https://doi.org/10.1016/j.physletb.2013.10.047
https://doi.org/10.1103/PhysRevD.92.064048
https://doi.org/10.1103/PhysRevD.92.064048
https://doi.org/10.1103/PhysRevD.76.064024
https://doi.org/10.1103/PhysRevD.76.064024

