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In this paper, using the recent method proposed by Ono, Ishihara and Asada (OIA) who extend the idea
of Gibbons and Werner to the stationary and axisymmetric case, we apply the Gauss-Bonnet theorem to the
optical metric of the non-rotating and rotating Damour-Solodukhin wormholes spacetimes to study
the weak gravitational lensing by these objects. Furthermore, we study the strong gravitational lensing
by the nonrotating Damour-Solodukhin wormholes using the Bozza’s method to see the differences
between the weak lensing and the strong lensing. We demonstrate the relation between the strong deflection
angle and quasinormal modes of the Damour-Solodukhin wormholes. Interestingly it is found that the
wormhole parameter 4, affects the deflection of light in strong and weak limits compared to the previous
studies of gravitational lensing by Schwarzschild black holes. Hence, the results provide a unique tool to

shed light on the possible existence of wormholes.
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I. INTRODUCTION

Einstein-Rosen (ER) bridge is a consequence of
Einstein’s theory of relativity similarly to black holes.
The ER equation glues to distant points of spacetime. This
was first introduced by Einstein and Rosen in 1935 and
then ER is refereed to as a wormhole [1]. On the other hand,
Morris and Thorne in 1988 showed that constructing
traversable wormhole solution is also possible, however
it costs to necessity of exotic matter [2,3]. Afterwards,
inspiring by the Morris-Thorne paper, many physicists
study wormhole in different aspects [4—40].

To detect the wormhole, a possible method is the appli-
cation of optical gravitational lensing. The gravitational
lensing by wormhole was studied widely in the literature
of astrophysics as well as theoretical physics [41-59]. Using
the Gauss-Bonnet theorem (GBT), Gibbons and Werner
(GW) [60,61] showed that it is possible to calculate deflec-
tion angle in weak limits, then Werner extended this method
to Kerr black holes using the Nazim’s osculating Riemannian
method with Randers-Finsler metric [62]. Afterwards, using
the finite distance from a lens object to a light source and a
receiver, Ishihara, Suzuki, Ono and Asada [63] calculated
the deflection angle in a static, spherically symmetric and
asymptotically flat spacetime, and then recently extended by
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Ono, Ishihara, and Asada (OIA) to calculate weak gravita-
tional lensing in stationary axisymmetric spacetimes [64].
These methods use the GBT to calculate gravitational lensing
that shows its global properties. The gravitational lensing
effect, either in the weak gravitational field or in the strong
gravitational field, it always requires the null geodesic
equations.

Briefly in the GW method, it is considered a domain Dy
bounded by the light ray and a circular boundary curve Cp
centered on the lens which intersect the light ray at source S
and observer O, where both of them are at coordinate distance
R from the lens. For the asymptotic observer and source in the
weak field approximation GW method demonstrates that
when the GBT is used within the optical metric:

// de+f Kt + 370, = 2mg(Dy), (1.1)
Dr 0Dy i

where dS is an areal element, K is the optical Gaussian
curvature, the asymptotic deflection angle & can be calculated
by using the following equation: [61]

&_—/”/deS,
0 Jry

for the case of Euler characteristic y(Dgr) =1 and the
summation of the jump angles > ,0; = z. Note that the
integral is taken over the infinite region of the surface bounded
by the light ray and excluding the lens. Furthermore, the

(1.2)
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photon orbit can be taken simply as the straight line
approximation r; to calculate the leading term of @. Using
the GW method or OIA method, a lot of studies of the weak
gravitational lensing of light by black holes/wormholes have
been done [29,34-36,64-76].

Here, the main aim of the paper is to show that GBT and
OIA method are valid for the calculating weak gravitational
lensing by Damour-Solodukhin wormholes (DSW) which
are the static Schwarzschild-like wormholes solution
recently found by Damour and Solodukhin in [4] and then
rotating Kerr-like case is found by Bueno et al. in [5].
Moreover, we try to show the deflecting angle how much is
shifted according to the parameter A from the Schwarzschild/
Kerr black holes. Moreover recently, it is shown that there is
a relation between the strong gravitational lensing and the
quasinormal modes (QNMs) in the context of black holes by
Stefanov, Yazadjiev and Gyulchev [77]. For this purpose, we
study the strong gravitational lensing by DSW using the
method of Bozza [78] who showed that the logarithmic
divergence of the deflection angles at photon sphere exits
and we show the relation of deflection angle with QNMs in
strong regime.

The organization of the paper is as follows. In Sec. I we
briefly summarize the DSW, then we present the calcula-
tions of the weak gravitational lensing using the GBT and we
calculate the strong gravitational lensing by the DSW. In
Sec. 111, we briefly give information about the rotating DSW
and calculate the deflection angle of the rotating DSW using
the OIA method. We conclude the paper in Sec. IV.

II. DAMOUR-SOLODUKHIN WORMHOLE

In this section, we consider the static Schwarzschild-like
wormhole solution, namely DSW [4] with metric:

dr?

2o —(1=2M/r+2)di +——
ds ( Jr+A%)dt +1—2M/r

+r2dQ2, . (2.1)

)

Note that this metric reduces to the Schwarzschild black
hole at A = 0. For nonzero values of the parameter A%, the
Einstein tensor of (2.1) has a zero G,,, on the other hand
G, Gog, Gyp ~ 4> and need some matter to become toy
model wormhole. Because of ¢ not correspond to the time
of an asymptotic observer, we can redefine the metric in

(2.1) by using t — t/V1+ 2> and M — M(1 + 22):

ds* = —f(r)dt* + dar + h(r)d? (2.2)
- g(r) @ '
where
2 2M (1 + 2%
=122 g = U o)
and h(r) = r?

In the next subsection, we will study the weak gravita-
tional lensing using the Gauss-Bonnet theorem, and obtain
the deflection angle in weak limits.

A. Weak gravitational lensing by Damour-Solodukhin
wormbhole using the Gauss-Bonnet theorem
To calculate the deflection angle by DSW using the GBT
[61], we use the equatorial plane 0 = 7/2, d6 = O without
losing generality, due to the spherical symmetry, and the
(2.2) spacetime reduces to orbital plane of light rays:

1

g(r)

Using the two constants of motion in an affine param-
eter (4):

ds*> = —f(r)dt* + dr’ + r’dg>. (2.4)

di L do

E= —, L= , 2.5

G s 25)
where E and L, are the energy and the angular momentum,
respectively. Then one can derive the another constant

namely, impact parameter b = E/L as follows:

i
b Ef(r)%, (2.6)
i
and the following relation is obtained % = %5’)

To define the optical metric g;; which is also known as
the optical reference geometry M°P', we use the fact that
each light ray satisfies the equation for null geodesics
ds*> = 0, and the optical metric ; 1s written as follows:

dtz Egrrdrz +g¢¢d¢2 -

(2.7)

Afterwards, we use the slice of the constant time ¢ of the
Eq. (2.4), and we obtain a spatial part of spacetime in two-
dimensional curved subspace M as follows:

d 2
d6® = g,,dr* + gyydd? = “— + r2dg?.
g(r)

Next we use the conformal transformation with con-
formal factor w?(x) between Egs. (2.7) and (2.8):

(2.8)

(2.9)

gm/ = wz(x)g/w-

1

fGry

does not change the condition of null geodesics.
It should be noticed that on the optical reference

geometry MOP', ¢ plays the role of an arc length parameter

because

It is noted that the conformal factor w?(x) = and it
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(2.10)

where the unit tangent vector k' of light ray paths on MOPt
as k' =49 with the unit vector condition 1= g;;k'k/.
Hence the GBT can be used on the optical reference

geometry M as follows:

// de+f kdt + > 0; = 2my(Dy).  (2.11)
Dy 0Dy -

where Dy is a nonsingular domain outside the light ray,
within boundary 0Dy = y; U Cg, k stands for the geodesic
curvature, K is used for the Gaussian curvature of optical
metric, 6; is the exterior jump angles at the ith vertex, and
x(Dg) =1 is the Euler characteristic number.

The geodesic curvature x can be calculated with the
following equation for the unit speed condition g(y,7) = 1:

k= §(.9). (2.12)

When R goes to infinity R — oo, the summation of the
jump angles ) ,0; are calculated as z for the source S, and
observer . Then the GBT is written as follows:

Lo a+a
// de+7{ kdt = // de+/ dg = x,
Dg Cr Dy 0

(2.13)

where the K is the Gaussian curvature (gives information
about how surface is curved) and the K is defined as
follows:

K=

A ) ()
grrng or \/._(:];; or 8¢ \/@ 8¢ '

(2.14)

Then the Gaussian curvature for the optical metric of
DSW in (2.7) is calculated:

(642 +6)M3 + (=72> = T)rM? + r*(2> + 2)M
(=r+2M)r* ’

(2.15)

The Gaussian curvature in (2.15) reduces to in this form
up to leading orders:

P M, M
S (r2M)t (= 2M)P T T (-r+2M) P
M(6M? — TMr + )2
(6 rEOE L o), (2.16)

(=r+2M)r*

Afterwards, we calculate the geodesic curvature k which
shows how far the curve Cy deviates from the geodesic,
using the following equation:

K

Note that if the trajectory of light ray y is geodesic, the
geodesic curvature is zero x(y) = 0 so that we can choose
Cgr = r(¢p) = R = const. At R goes to oo, the geodesic
curvature k reduces to

hm K(CR) g E

R—o00

(2.18)

Additionally, at R goes to oo, optical metric also goes to:

Igim dt — Rdg. (2.19)

Using the straight line approximation of the light ray
as r = b/ sin @, the deflection angle by the DSW can be
calculated using the GBT as follows:

&_—/”/mde,
0 _b_

sin @

(2.20)

where dS = \/det|j|drd¢ is an areal element and the
k(Cg)dt = dg is used.

Using the Gaussian curvature K Eq. (2.16) into the above
integral, the deflection angle by DSW within the leading
order terms (weak lensing) for the asymptotic source and
receiver is calculated as follows:

AM N 2M)?
b b

a~

(2.21)

The deflection angle by DSW is increased with the ratio
of the parameter A as seen in the Eq. (2.21) with compared
to Schwarzschild black hole [61].

B. Strong deflection limit of Damour-Solodukhin
wormhole and its relation with QNMs

Using the Bozza’s procedure [78], we study the strong
gravitational lensing (SGL) of the DSW in the case of
photons passing very close to the photon sphere, with
radius r,,. We use the assumption (6 = z/2), with the light
ray’s trajectory
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E?L?
i’zzgr<———>:0, 2.22
voaT 222
where “dot” is for the derivative respect to an affine
parameter. Note that the conserved energy is E=f(r)t >0
whereas the angular momentum defined as L = r(r)¢ in

Eq. (2.5). From the null circular orbit, we can find by the
largest positive solution of the equation,

(2.23)

Using the Eq. (2.23), it is found that r,, =3M and
Tm > Tiroat 18 Satisfied. Moreover, light ray is deflected
from the closest approach distance of the photon 7. smaller
than r so that this condition should be considered where the
light ray is supposed to come from infinity and deflect by
DSW. Using the conservation of the angular momentum,
the closest approach distance r. which is related to the
impact parameter is calculated as

= ﬁg:% - \/rc2<1 —2JZ>_1. (2.24)

After we use the definition of the critical impact
parameter u.. at strong deflection limit r. — r, or
u— u, as

o |h(r)
Uy(r,) = lim , 2.25
) = I\ 70 22
we obtain:
u,, = 3vV3M. (2.26)

Then we calculate the exact deflection angle o for the
DSW as follows:

(2.27)

where I(r,) is calculated by

o dr
1=2 /
re 9(r)h(r) h(nf(re) _ 4

h(ro)f(r)

(2.28)

Note that when u decreases, the bending angle «
increases that the light rays encircle the DSW completely
till 2z. At r. = r,, due to u = u,, the photon will be trapped
inside an orbit. As it diverges in the SGL u — u,, or
r. — r,,, we rewrite the deflection angle in this form which
is used for ultrastatic spacetimes:

a(u) = —alog (V’—— 1) b+ 0((ro = rp)10g(re = 1)),

m

(2.29)

where a and b are SGL constants. The impact parameter u
is also related to angular separation of the image from the
lens: 6 = DLOL’ where D is the distance between the lens
Do, and the observer. Then the strong field limit of the
deflection angle can be calculated as follows:

a(u) = —alog (‘9D0L _ 1) + B+ O(u— ) log(u— 1],

(2.30)
with
o ¢ 2/ (1)
g(ra) [0 (rp) f (1) = h(r) f(r)"]
1

ST 230
. a r2 h”(rm) _f//(rm) r -7
b=aton |7 (G =) i)

_In(6)V-222+1  2(2*—1/2)(r, — )

~ In(10)222 — 1 i 222 -1 ’ (232)

where expression for /(r,,) can be found in [78] (only solve
numerically). Note that prime denotes the derivative with
respect to the radial coordinate r. Moreover, all the
information about the SGL is encoded into @ and b.
Then we find the relation with the QNM of DSW [77]:

wgonm = Q1 —i(n + 1/2)|A], (2.33)
where
A C\/g(rm)[f(rm)h”(rm) = f"(rw)h(ry))]
2h(rp)
A= CV3-6F 39;4612, (2.34)

with speed of light c. The parameter A which appears in the
imaginary part is the Lyapunov exponent which determines
the instability timescale of the orbit. Then the simple
relation can be written as follows:

(2.35)

The other important relation is the coordinate angular
velocity with the impact parameter of the lens
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(2.36)

After using the Egs. (2.35) and (2.36), it is easily observed
that

Q
a=-2. 2.37
a=-] (2.37)

III. ROTATING DAMOUR-SOLODUKHIN
WORMHOLE

In this section, we have briefly describe rotating DSW
spacetime. The Kerr-like wormhole metric is constructed
using the method of Damour and Solodukhin [5]:

2Mr 4Mar sin® 6 >
2 1= 2 _ _ 2
ds ( S )dt S dtde + Adr

2Ma?rsin? 0

+ Xd6* + <r2+a2+ S

) sin® 0d¢?,
(3.1)

which

T=r24a%os?0, A=r-2M(1+2)r+d  (3.2)

Note that the M is the mass and the aM stands for the
angular momentum. For the case of 1> = 0, we can recover
the Kerr metric, on the other hand, for nonvanishing A2,

the structure of the spacetime is totally changed. We have
calculated the positive root of A: r, = (1 +A2)M +

VM?*(1+2%)> —a? that gives special surface, but not
the surface of the event horizon, and the throat of the
wormhole is located at r = r_ . For the nonvanishing values
of the 4 # 0, the Kerr-like wormhole is constructed and its
QNMs are recently studied in [5].

Now, we will study the weak gravitational lensing by
rotating DSW with OIA method, and obtain the deflection
angle in weak limits.

A. Deflection angle of rotating Damour-Solodukhin
wormhole using OIA method

Here, we use the OIA method to investigate the weak
gravitational lensing by rotating DSW, known as Kerr-like
wormhole [64]. First, using the null condition (ds*> = 0) in
the rotating DSW spacetime given in Eq. (3.1), we obtain
the generalized optical metric y;; (i, j = 1, 2, 3) in this form

[64,79]:
dt = \/y;dx'dx) + f;dx’,

with the components

(3.3)

o 2 5 2 5
Ldxtdx! = — dr= + dao
i A(z —2Mr) (T —2Mr)
2a>Mrsin?6\  ZsinZ6
2 2 2
+ (r tat (Z—2Mr)> (Z—2Mr)d¢ ’
(3.4)
. 2aMrsin?6

Then we calculate the Gaussian optical curvature K in
the weak field approximation as follows:

_(Z+2)M

P

K~ (3.6)

Then, one should use the OIA method with the straight

line approximation of the light ray defined as r =

b(sin(¢) + w - 2”}]—]‘24)_1 and the geodesic curva-
ture to find the contribution of rotating term aM in
deflection angle (for details see the method by Ono,
Ishihara and Asada in Ref. [64]).

Afterwards we obtain the geodesic curvature x on the
equatorial plane for the slowly rotating DSW in weak field
limit [64,79]:

[
K==\ —gor (3.7)
]/}’99 &,
2aM  2MPai®  2aM?
K=—" okl 2aM” (3.8)
r r r

Then the net contribution of the geodesic part at infinite
distance limit becomes:

4Ma
/de = Zl:?,

(3.9)
where the positive sign stands for a retrograde light rays
and negative sign is for the prograde light rays. Note that
there is not any A term in geodesics part, because we
consider only leading order term of M in weak field limit.
Hence, we calculate the total deflection angle of the
rotating DSW at the leading order of the weak field
approximation:

2M(22 +2) 4M
@ +2) | 4Ma (3.10)

b b?

a=

We note that only the first order terms in aM should be
correct. One can modify the integration domain S, to
obtain the correct second order terms as well similarly to
paper of [64]. In (3.10) first term stands for the static
wormhole while the second terms lead the contribution of
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FIG. 1. The deflection angles by DSW, Kerr black hole, and

rotating DSW (RDSW) are plotted as a function of the b for M =
a = 1 and four different values of :: A=0.5,A=1,A=3and 1 = 5.

the rotation. For the case of a goes to zero, the total
deflection angle of rotating DSW reduces to the nonrotating
DSW case which we found in (2.21). Furthermore, for the
case of 1 = 0, the deflecting angle of the Kerr black hole is
recovered [64]. We plot the deflection angles by DSW,
Kerr black hole, and rotating DSW (RDSW) as a function
of the closest approach distance b for M = a =1 and
four different values of A: A =05, A=1, A=3 and
A =75 to illustrate the effect of the wormhole parameter
A in Fig. 1.

IV. CONCLUSIONS

In summary, the observation of wormholes by studying
the gravitational lensing is one of the most effective ways to
testify them in the universe.

For this purpose, first, we have explicitly calculated the
deflection angle of the light by DSW in the weak field
approximation using the method developed by GW.

Second, we have studied the strong gravitational lensing
using the method of Bozza, and show the relation of the
strong deflection angle with its QNM:s.

Last, we have briefly described the DSW in a rotating
Kerr-like black hole spacetime and studied the weak
gravitational lensing using OIA method where the receiver
and source are at the null infinity. There are two methods to
calculate the deflection angle of rotating black holes in
GBT. First method is the Nazim’s osculating Riemannian
method with Randers-Finsler metric which is found by
Werner [62]. In this paper, we have used the second method
recently found by Ono, Ishihara and Asada (OIA) in
Ref. [64]. A huge amount of calculations is needed in
the method of Werner for arriving at Eq. (3.10), on the other
hand, the method proposed by OIA in Ref. [64] enables us
to do more easily the calculations.

The significant of this result is that the deflection
of a light ray is calculated by outside of the lensing
region which means that the effect of the gravitational
lensing is a global effect such that there are more than one
light ray converging between the source and observer.
Hence, we are able to find accurately deflecting angle in
weak-field limits. We finally conclude that the deflection
angle by the DSW is increased with the DSW parameter of
A in Fig. 1.

With regards to future work, it would be interesting to
see whether this approach could also be extended to the
other compact objects and also see whether there is an
effect of dark matter on the deflection angle. A careful
studies on the gravitational lensing and also gravitational
waves with QNMs may shed some light on possible
signature of the existence of the wormholes.
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