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Abstract We consider the Deser–Sarioglu–Tekin (DST)
black hole as a background, and we study the motion of
massive particles in the case that we have a collision of two
spinning particles in the vicinity of its horizon. New kinds of
orbits are allowed for small deviations of General Relativity,
but the behavior of the collision is similar to the one observed
for General Relativity. Some observables like the bending of
light and the perihelion precession are analyzed.
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1 Introduction

The Deser–Sarioglu–Tekin (DST) action is characterized
by the action of General Relativity (GR) with additional
terms, i.e. non-polynomial terms of the Weyl tensor, that
preserve the (first) derivative order of the GR equations in
Schwarzschild gauge and provide non-Ricci flat extensions
of GR. DST black holes are obtained using the Weyl tech-
nique for pure GR [2], which led to rather strange metrics
[1]; however, GR can be recovered. Their thermodynamics
was studied in [3].

The motion of particles in a spherically symmetric space-
time background has been of great interest. It is well known
that all solar system observations, such as light deflection, the
perihelion shift of planets, and the gravitational time-delay,
are well described within Einstein’s General Relativity. Also,
observational data allow us to fix the parameters of alterna-
tive four-dimensional theories; see for instance [4,5]. In this
regard, we address if new orbits appear and if the DST theory
allows us to set the observables better than GR, for a small
deviation from GR. The study of the motion of spinning tops
(STOPs) in the framework of GR began with the work of
Mathisson [6] and Papapetrou [7], which were again taken
up by Tulczyjew [8], Taub [9], and Dixon [10]. The analy-
sis of spinning particles moving around Schwarzschild black
holes was first carried out by Corinaldesi and Papapetrou
[11], who solved the Mathisson–Papapetrou (MP) equations,
and later by Hojman [12], who solved the resulting equa-
tions derived from the Lagrangian formalism. An analytic
treatment of the trajectories in general Schwarzschild-like
spacetimes was carried out in [13], where it was found that
a spinning test particle does not follow the geodesics due to
its interaction with tidal forces.

On the other hand, it is well known that black holes can
act as natural particle accelerators if in a collisional process
of two particles near the degenerate horizon of an extreme
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Kerr black hole, one of the particles has a critical angular
momentum by creating a large center of mass (CM) energy
[15]. Nowadays, this process is known as the Bañados, Silk,
and West (BSW) mechanism, which was found for the first
time by Piran et al. [16–18]. The BSW mechanism can be
extended to non-extremal black holes [19,24] and to non-
rotating charged black holes [21,22]. On top of that, it has
been argued to be a universal property of rotating black holes
[20]. The BSW mechanism has been studied for different
black hole geometries [26–52]. Also, the formation of black
holes through the BSW mechanism was investigated in [53].
It is worth mentioning that for the collision of STOPs in the
equatorial plane of a Schwarzschild black hole, retrograde
trajectories can experience significant accelerations, which
generate divergent center-of-mass energies if the STOP col-
lides with another particle moving in the same plane. How-
ever, in order to reach such a divergence, the trajectory of
the STOP has to pass from timelike to spacelike [54]. In this
regard, we address if the DST black hole can act as a particle
accelerator.

The manuscript is organized as follows: In Sect. 2 we
give a brief review of the DST black hole. Then we study
and discuss the geodesics in the equatorial plane, and we
analyze two observables, in particular the bending of light
and the perihelion precession. Also, we find the values of
the coupling parameter in order to set the observations in
both tests, in Sect. 3. In Sect. 4 we study the collision of
spinning particles, and we investigate the possibility that the
DST black hole acts as a particle accelerator. Finally, our
conclusions are in Sect. 5.

2 DST black holes

The action of Deser–Sarioglu–Tekin [1] corresponds to the
Einstein action with the addition of non-polynomial terms,
which in units of κ = 1 is given by

I = 1

2

∫
d4x

√−g
(
R + βn

∣∣trCn
∣∣1/n

)
, (1)

where

trCn ≡ Cab
cdCcd

e f . . .C..
pqCpq

ab . . . , (2)

n being the number of copies of the Weyl tensor C and βn

corresponding to the coupling constant. So, for n = 2 and by
defining σ = β2/

√
3, the above action can be written as

I =
∫ ∞

0
dr [(1 − σ)(arb′ + b) + 3σab] , (3)

up to boundary terms. Here, primes denote radial derivatives.
Thus, for D = 4, the following metric is the solution of the
field equations:

ds2 = −a(r) b2(r) dt2 + dr2

a(r)
+ r2 d�2 , (4)

where

a(r) = 1 − σ

1 − 4σ
+a1 r

(4σ−1)/(1−σ) , b(r) = b1 r
3σ/(σ−1) ,

(5)

a1 and b1 are integration constants of which b1 is removable
by time rescaling. Note that for σ = 1, there is no solution
at all; for σ = 0, GR is recovered, and for σ = 1/4, a(r) =
ln(r/r0) and b(r) = 1/r . All non-vanishing components of
the mixed Weyl tensor are proportional to the single function
X ,

X (r, t) ≡ 1

r2

(
2(a − 1) − 2ra′ + r2a′′)

+ 1

rb

(
3ra′b′ − 2a(b′ − rb′′)

) + 1

b
∂t

(
1

a2b
∂t a

)
.

(6)

Also, any scalar of order n in the Weyl tensor C is propor-
tional to Xn . Therefore

trCn =
(

−1

3

)n

[2 + (−2)2−n]Xn . (7)

Note that the range 1/4 < σ < 1 is excluded to retain the
signature. However, for a1 < 0, it is possible to recover the
Schwarzschild metric. In the following we analyze the branch
a1 < 0, and we consider the functions a(r) and b(r) as

a(r) = 1 − σ

1 − 4σ
−

(rS
r

) 1−4σ
1−σ

, (8)

b(r) =
(
r

rS

) 3σ
σ−1

, (9)

which are dimensionless, with rS being the Schwarzschild
horizon coordinate. The black hole horizon is given by

r+(σ, rS) = rS

(
1 − 4σ

1 − σ

) 1−σ
1−4σ

, (10)

which depends on the parameter σ and the Schwarzschild
horizon. The event horizon, as a function of σ , has the max-
imum value r (max)

+ ≈ 1.44rS when

σ1 = −e − 1

4 − e
≈ −1.34 . (11)

Also, when σ → ±∞, r+ → √
2rS ; see Fig. 1.
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Fig. 1 The behavior of the DST horizon as a function of σ with rS = 2

It is worth mentioning that the mass of the black hole solu-
tion could be computed following the usual Abbott–Deser–
Tekin (ADT) formulation of conserved charges [55–58] or
employing the off-shell ADT current which generalizes the
usual ADT method [59]. In the on-shell ADT formalism the
metric gμν is split into a background metric ḡμν plus a per-
turbation hμν ; that is, gμν = ḡμν + hμν . Also, for the con-
struction of a conserved current it is necessary to linearize
the field equations, which are obtained by varying the action
(1) with respect to the metric and can be written in a generic
form as

Eμν = κTμν . (12)

We consider the background metric

ds̄2 = − 1 − σ

1 − 4σ
r− 6σ

1−σ dt2 + 1 − 4σ

1 − σ
dr2 + r2d�2 , (13)

where a1 = 0 and b1 has been removed by time rescaling
from Eqs. (4) and (5). In the following, all the barred quan-
tities refer to the background metric ḡμν . Thus, it is possible

to find the linearized tensor E (1)
μν (h) [60]. Therefore, given a

background Killing vector ξ̄ μ and using the linearized tensor
E (1)

μν (h), a partially conserved current can be constructed:

jμ = √−ḡξ̄νE (1)μν , ∂μ jμ = 0 . (14)

Now, integrating ∂μ jμ on the background manifold M̄ and
using the Stokes theorem, the conserved charge as an integral
over a spatial hypersurface 	̄ is given by

Q(ξ̄ ) =
∫

	̄

d3y
√

γ̄ n̄μξ̄νE (1)μν , (15)

where γ̄ is the induced metric on the boundary of M̄ and
n̄μ is a unit normal vector to the boundary ∂M̄. Addition-

ally, ξ̄νE (1)νμ can be written as the divergence of a tensor,
ξ̄νE (1)νμ = ∇̄νFμν(ξ̄ ), where Fμν is antisymmetric, and
using the Stokes theorem again the following expression can
be obtained:

Q(ξ̄ ) =
∫

∂	̄

d2z
√

γ̄ (∂	̄)ε̄μνFμν(ξ̄ ) , (16)

where ∂	̄ is the boundary of 	̄, γ̄ (∂	̄) is the induced metric
on ∂	̄ and the antisymmetric binomial vector is defined by
ε̄μν = 1

2 (n̄μσ̄ν − n̄ν σ̄μ), and σ̄ μ is the outward unit normal
on ∂	̄. With this expression and considering the background
timelike Killing vector ξ̄ = ∂t , one can compute the mass of
the solution, which should be related to the parameter a1; for
σ → 0, we expect to recover the mass of the Schwarzschild
black hole. On the other hand, in the off-shell ADT formal-
ism [59], an off-shell Noether current Jμ can be defined,
which generalizes the on-shell current (14), and the off-shell
ADT potential Fμν can be defined as Jμ = ∇̄νFμν . Using
this potential, and following a similar procedure to above,
an expression for the conserved charges can be obtained as
an integral at spatial infinity on the boundary of the space-
like hypersurface. In addition, the expression obtained can be
evaluated more easily using an important relation between
the off-shell Noether potential and the ADT potential. We
refer the reader to [59] for details.

3 Geodesics in the equatorial plane

The Lagrangian associated with the metric (4) is

2L = −a b2 ṫ2 + ṙ2

a
+ r2θ̇2 + r2 sin2 θφ̇2 , (17)

where q̇ = dq/dλ, and λ is an affine parameter along the
geodesic that we choose as the proper time τ for particles.
Since the Lagrangian (17) is independent of the coordinates
(t, φ), their conjugate momenta (�t ,�φ) are conserved. The
equations of motion can be obtained from

�̇q − ∂L
∂q

= 0 , (18)

which yield

�̇t = 0, �̇r = − ṫ2

2

d(a b2)

dr
+ ṙ2

2

d(a−1)

dr
+r θ̇2 + r sin2 θφ̇2 , (19)

�̇θ = r2 sin θ cos θ φ̇2, and �̇φ = 0 , (20)

where �q = ∂L/∂q̇ are the conjugate momenta to the coor-
dinate q, in particular

�t = −a b2 ṫ, �r = ṙ

a
, (21)
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�θ = ṙ2 θ̇ , and �φ = r2 sin2 θ φ̇ . (22)

So, by considering the motion of neutral particles on the
equatorial plane, θ = π/2 and θ̇ = 0, we obtain

�t = −a b2 ṫ ≡ −E , �r = ṙ

a
, �φ = r2 φ̇ ≡ L , (23)

where E and Lφ are dimensionless integration constants.
Now, by using Eqs. (8) and (11), the Lagrangian can be rewrit-
ten in the following form:

2L ≡ −m = − E2

a b2 + ṙ2

a
+ L2

r2 . (24)

So, by normalization, we shall consider that m = 1 for mas-
sive particles and m = 0 for photons. We solve the above
equation for ṙ2 in order to obtain the radial equation, which
allows us to characterize the possible movements of test par-
ticles without an explicit solution of the equation of motion
in the invariant plane, and we obtain

(
dr

dλ

)2

= 1

b2

[
E2 − V (r)

]
, (25)

(
dr

dt

)2

= a2b2

E2

[
E2 − V (r)

]
, (26)

(
dr

dφ

)2

= r 4

L2 b2

[
E2 − V (r)

]
, (27)

where V (r) is the effective potential given by

V (r) = a b2
(
m + L2

r2

)
. (28)

3.1 Null geodesics

3.1.1 Radial motion

The radial motion corresponds to a trajectory with null angu-
lar momentum (or zero impact parameter). In this case, the
photons are destined to escape to infinity or fall into the black
hole because the effective potential is V (r) = 0. Also, Eqs.
(26) and (27) reduce to

± dr

dλ
= E

b
(29)

and

±dr

dt
= a b , (30)

respectively. The sign + (−) corresponds to photons that
escape (falling) from the event horizon. Now, choosing the

initial conditions for the photons as r = ρ0 when t = λ = 0,
Eq. (29) yields

λ(r) = ±rS
E

(
1 − σ

1 − 4σ

) [(
r

rs

) 1−4σ
1−σ −

(
ρ0

rS

) 1−4σ
1−σ

]
. (31)

Thus, the photons arrive at the event horizon for a finite λ

parameter, which can be observed in Fig. 2. Notice that pho-
tons plunge to the horizon with the same energy. The photon
in the neighborhood of a DST black hole with positive σ

(0 < σ < 1/4) reaches a point (outside the horizon) in a
smaller affine parameter than a photon in the neighborhood
of a DST black hole with a negative σ .

On the other hand, performing the change of variables
x = (r/r+)ν+1, and integrating Eq. (30) leads to

t (r) = ±rs

(
r+
rS

)1−ν

(B[x; z + 1, 0] − B[x0; z + 1, 0]) ,

(32)

where B[x; ᾱ, β̄] corresponds to the Beta function, z = (1−
ν)/(1 + ν) and (1 − σ)/(1 − 4σ) = 1/(1 + ν). Notice
that the solution for the coordinate time does not depend on
the energy of the photon. In Fig. 3, we can observe that the
photons in the coordinate time do not cross the horizon of
the DST black holes.

3.1.2 Angular motion

The effective potential for photons and their trajectories are
plotted in Fig. 4. The effective potential presents a maximum
value, which corresponds to an unstable circular orbit with a
radius given by

rU = rS

(
3(1 − 4σ)

2(1 − σ)(1 + 2σ)

) 1−σ
1−4σ

. (33)

The classical result for Schwarzschild’s spacetime (rU =
3M) is obtained when σ = 0, and rS = 2M . It is worth
mentioning that there is a maximum in the potential only for
−1/2 < σ < 1/4. On the other hand, the potential shows a
different behavior for σ ≤ −1/2. It is worth mentioning that
stable circular orbits are not allowed for photons.

Now, based on the impact parameter β ≡ L/E , we give a
brief qualitative description of the allowed angular motions
for the photons plotted in Fig. 4. First, we can observe a
capture zone, if 0 < β < βc, where βc = L/Ec with E2

c =
V (rU ), where the photons fall to the horizon, depending on
the initial conditions; their cross section, σ̄ , in this geometry
is [70]

σ̄ = π β2
c . (34)
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Fig. 2 The behavior of the
affine parameter λ as a function
of r , for different values of σ ,
with E = 1, ρ0 = 6, rS = 2.
Vertical lines correspond to the
event horizon for different σ

values

Fig. 3 The behavior of the
coordinate time t as a function
of r , for different values of σ ,
with ρ0 = 6, and rS = 2.
Vertical lines correspond to the
event horizon for different σ

values

Also, we can observe critical trajectories, if β = βc, where
the photons can stay in one of the unstable circular orbits of
radius rU . Therefore, the photons that arrive from an initial
distance ri (r+ < ri < rU ) can asymptotically fall to a circle
of radius rU . The proper period in such an orbit is

Tλ = 2πr2
U

L
. (35)

As a result it is found to be the same as the one in the
Schwarzschild case [71], when σ = 0. Also, the coordinate
period is given by

Tt = 2πβc . (36)

Finally, there is a deflection zone, if βc < βd < ∞, where
the photons come from infinity to a distance r = rd (which
is the solution of the equation V (rd) = E2) and then return
to infinity.

As we mentioned, the potential shows a different behavior
for σ ≤ −1/2. For σ = −1/2, the potential tends to L2/2,
for σ < −1/2 the potential shows that all trajectories allowed

have a return point and then plunge into the black hole; see
Fig. 5.

3.1.3 Bending of light

In this section we will follow the procedure established in
Ref. [65]. So, Eq. (27) for photons is

(
dr

dφ

)2

= r2ν
S

β2 r
4−2ν − μr2 + r1/μ

S r1−ν , (37)

where β is the impact parameter, ν = 3σ/(σ − 1), and μ =
(1−σ)/(1−4σ). By using the change of variables r = 1/u,
the above equation can be written as

(
du

dφ

)2

= r2ν
S

β2 u2ν − μu2 + r1/μ
S u3+ν . (38)

Notice that for σ = 0, the above equation is reduced to the
classical equation of Schwarzschild for the motion of photons
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Fig. 4 The top panel shows the behavior of the effective potential for
photons V(r) as a function of r , for different values of σ , with rS = 2
and L = 1. The bottom panel shows the trajectories for photons with
E2 = 0.01, and different values of σ

Fig. 5 The behavior of the effective potential for photons V(r) as a
function of r , for σ ≤ −1/2, with rS = 2 and L = 1

for rS = 2M ,

(
du

dφ

)2

= 1

β2 − u2 + 2Mu3 . (39)

So, the derivative of Eq. (38) with respect φ yields

u′′ + μu = r1/μ
S

2
(3 + ν)u2+ν + νr2ν

S

β2 u2ν−1 , (40)

where ′ denotes the derivative with respect toφ. Now, neglect-
ing the last term, we obtain

u = 1

β
sin(

√
μφ) + ε

β2+ν21+ν/2μ

(
1 + 2 + ν

6
cos(2

√
μφ)

)
, (41)

where ε = r1/μ
S (3 + ν)/2. For large r (small u), φ is small,

and we may take sin(
√

μφ) ≈ √
μφ and cos(2

√
μφ) ≈ 1.

In the limit u → 0, φ approaches φ∞, with

φ∞ = − (3 + ν)(8 + ν)r1/μ
S

6μ3/2β1+ν22+ν/2 . (42)

Therefore, for the DST black holes, the deflection of light α̂

is equal to 2 |φ∞| and yields

α̂ = (3 + ν)(8 + ν)

3μ3/222+ν/2

(
rs
β

)1+ν

. (43)

Notice that for σ = 0 and rS = 2M , we recovered the classi-
cal result of GR; that is, α̂ = 4M/β. The first observational
value of the deflection of light was measured by Eddington
and Dyson in the solar eclipse of March 29, 1919. For the
Sobral expedition this value is α̂Obs. = 1.98 ± 0.16′′, and it
was α̂Obs. = 1.61 ± 0.40′′ for the Principe expedition [65].
Nowadays, the parameterized post-Newtonian (PPN) formal-
ism introduces the phenomenological parameter γ , which
characterizes the contribution of space curvature to gravi-
tational deflection. In this formalism the deflection angle is
α̂ = 0.5(1 + γ )1.7426, and currently γ = 0.9998 ± 0.0004
[72]. So, α̂ = 1.74277′′ for γ = 0.9998 + 0.0004 and
α̂ = 1.74208′′ for γ = 0.9998 − 0.0004.

It is worth mentioning that there is a discrepancy between
the theoretical value predicted by GR and the observational
value. So, by attributing this discrepancy to small devia-
tions of Schwarzschild’s spacetime, we can attribute such
a discrepancy to σ . Therefore, −8.97241 × 10−6 < σ <

3.41708 × 10−6, in order to match with the observational
results.

3.2 Timelike geodesics

In this section, we will study the motion of massive particles
and the perihelion precession. In the following, we fixm = 1.
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3.2.1 Radial geodesics

The effective potential for particles (L = 0) is plotted in
Fig. 6. Notice that, for σ = 0, there are two kind of tra-
jectories. One of them is the bounded trajectory (E < 1),
which has a return point and plunges into the horizon. The
other one is the unbounded trajectory (E ≥ 1), which can
escape to infinity or plunge into the black hole. For σ < 0, we
observe that the allowed trajectories are bounded. Interest-
ingly, for 0 < σ < 1/4, the potential has a maximum value
V (ru) ≡ E2

u , at the unstable equilibrium point (ru), which is
not present in GR (σ = 0), and which can be obtained from
the derivative of Eq. (28) with respect to r . This unstable
equilibrium point is given by

ru = rS

(
(1 − 4σ)(1 + 2σ)

6σ(1 − σ)

) 1−σ
1−4σ

. (44)

Also, for this range of values of σ , there are three kinds of tra-
jectories. The first are the critical trajectories, of the first and
second kind, which are allowed for particles with E = Eu .
The trajectories of the first kind are characterized by particles
that are asymptotically incoming from infinity to the unsta-
ble equilibrium point. The trajectories of the second kind are
characterized by particles that are asymptotically incoming
from a distance, r < ru , to the unstable equilibrium point. For
particles with E > Eu , the trajectories are unbounded, and
for E < Eu , we observe that a frontal scattering is allowed,
which is characterized by particles that are incoming from
infinity to a radial distance of closest approach, and then go
back to infinity. The frontal scattering for charged particles
was studied in Ref. [66].

3.2.2 Angular geodesics

The effective potential for particles with positive angular
momentum is plotted in Fig. 7. Note that for the cases that
have been analyzed the effective potential has extremal val-
ues that correspond to circular orbits (c.o.). The maximum
value corresponds to the unstable circular orbit, whereas the
minimum value corresponds to the innermost stable circu-
lar orbit (ISCO). The circular orbits correspond to the roots
(rc.o.) of the following equation:

V ′ = 2νμ

r2ν
S

r2ν−1 − r1−ν
S (ν − 1)rν−2

+2νμL2

r2ν
S

(2ν − 2)r2ν−3 − r1−ν
S L2(ν − 3)rν−4 = 0 ,

(45)

which does not have an analytical solution. However, for
σ = 0 the above equation yields

V ′ = rS
r2 − 2L2

r3 + 3rSL2

r4 = 0, (46)

whose roots correspond to the Schwarzschild case (r =
L2(1 ±

√
1 − 3r2

S/L
2)/rS), where the (+) sign is for the

ISCO and the (−) sign corresponds to the unstable circular
orbit. On the other hand, the periods for one complete revo-
lution of these circular orbits, measured in proper time and
coordinate time, are

Tτ = 2π

[
(2 − 2ν)μr−2ν

S r3
c.o. − (3 − ν)r1−ν

S r2−ν
c.o.

(1 − ν)r1−ν
S r−ν

c.o + 2νμr−2ν
S rc.o.

]1/2

,

(47)

Tt = 2π

[
2r3−2ν

c.o

(1 − ν)r1−ν
S r−ν

c.o + 2νμr−2ν
S rc.o.

]1/2

, (48)

for σ = 0; the periods are given by

Tτ = 2π

[
2r3

c.o.

rS
− 3r2

c.o.

]1/2

, (49)

Tt = 2π

√
2r3

c.o.

rS
, (50)

which matches with the periods for Schwarzschild spacetime.
Now, expanding the effective potential around r = rISCO, we
can write

V (r) = V (rISCO) + V ′(rISCO)(r − rISCO)

+1

2
V ′′(rISCO)(r − rISCO)2 + · · · , (51)

where ′ means derivative with respect to the radial coordinate.
Obviously, in these orbits V ′(rISCO) = 0. So, by defining the
smaller coordinate x = r − rISCO, together with the epicycle
frequency κ2 ≡ V ′′(rISCO) [67], we can rewrite the above
equation as V (x) ≈ E2

ISCO + κ2 x2, where E2
ISCO is the

energy of the particle in the stable circular orbit. Also, it is
easy to see that test particles satisfy the harmonic equation
of motion, ẍ = −κ2 x . Therefore, in our case, the epicycle
frequency is given by

κ2 = κ0(κ1 − κ2) , (52)

where

κ0 = 1

r3
ISCO

[
(1 − ν)r1−ν

S r−ν
ISCO + 2νμr−2ν

S rISCO

]
, (53)

κ1 = 2(1 − ν)(3 − 2ν)μr−2ν
S r1+2ν

ISCO − (3 − ν)(4 − ν)r1−ν
S rν

ISCO

(2 − 2ν)μr−2ν
S rISCO − (3 − ν)r1−ν

S r−ν
ISCO

,

(54)

κ2 = (1 − ν)(2 − ν)r1−ν
S rν

ISCO − 2ν(2ν − 1)μr−2ν
S r1+2ν

ISCO

(1 − ν)r1−ν
S r−ν

ISCO + 2νμr−2ν
S rISCO

. (55)

Notice that when σ = 0, κ → κS , where κS is the epicycle
frequency in the Schwarzschild case, given by

κ2
S = rS

r3
ISCO

[
rISCO − 3rS
rISCO − 3rS/2

]
. (56)

123



528 Page 8 of 14 Eur. Phys. J. C (2019) 79 :528

Fig. 6 The behavior of the
effective potential for particles
V(r) as a function of r , for
different values of σ , rS = 2 and
L = 0. For σ = 0 the potential
V (∞) = 1, for σ < 0 the
potential V (∞) = ∞, and for
0 < σ < 1/4 the potential
V (∞) = 0

Also, there are bound orbits like planetary orbits, as in GR
[73]; for instance see the left panel of Fig. 8 for a positive
σ . Moreover, for σ < 0, all the trajectories are bounded due
to V (∞) = ∞. It is worth mentioning that these kinds of
orbits have the same behavior as the timelike orbits for a
Schwarzschild AdS black hole [68]. Interestingly, for 0 <

σ < 1/4, the spacetime allows for two unstable circular
orbits and one ISCO. In the right panel of Fig. 8, we show
the scattering of neutral particles with E < 1, which are not
present in Schwarzschild spacetime, which can be a repulsive
scattering or an attractive scattering.

3.2.3 Perihelion precession

The previous analysis of the effective potential for particles
showed that there are planetary orbits which allow us to study
the perihelion precession. So, we follow the treatment per-
formed by Cornbleet [69], which allows us to derive the for-
mula for the advancement of the perihelia of planetary orbits.
The starting point is considering the line element in unper-
turbed Lorentz coordinates,

ds2 = −dt2 + dr2 + r2(dθ2 + sin2θdφ2) , (57)

together with the line element (4). So, considering only the
radial and time coordinates in the binomial approximation,
and b(r) ≈ 1, when σ → 0 in the Newtonian limit. So, the
transformation gives

dt̃ ≈ √
μ

(
1 − 1

2μ

(rS
r

) 1
μ

)
dt , (58)

dr̃ ≈ 1√
μ

(
1 + 1

2μ

(rS
r

) 1
μ

)
dr . (59)

We will consider two elliptical orbits, one the classical Kepler
orbit in (r, t) space and a DST black hole orbit in (r̃ , t̃) space.
Then in the Lorentz space d A = ∫ R

0 rdrdφ = R2dφ/2, and
hence

dA

dt
= 1

2
R2 dφ

dt
, (60)

which corresponds to Kepler’s second law. For the DST black
hole case we have

d Ã =
∫ R

0
rdr̃dφ , (61)

where dr̃ is given by Eq. (59). So, we can write (61) as

d Ã = 1√
μ

∫ R

0
r

(
1 + 1

2μ

(rS
r

)1+ν
)
drdφ

= 1

2
√

μ

(
R2 + r1+ν

S R1−ν

μ(1 − ν)

)
dφ . (62)

Therefore, applying the binomial approximation we obtain

d Ã

dt̃
= 1

2
√

μ

(
R2 + r1+ν

S R1−ν

μ(1 − ν)

)
dφ

dt̃

≈ R2

2μ

(
1 + (3 − ν)

2μ(1 − ν)

(rS
R

)1+ν
)

dφ

dt
. (63)

So, we use this increase to improve the elemental angle from
dφ to dφ̃. Then for a single orbit

∫ �φ̃

0
dφ̃ =

∫ �φ=2π

0

1

μ

(
1 + (3 − ν)

2μ(1 − ν)

(rS
R

)1+ν
)

dφ .

(64)

Now, the polar form of an ellipse is given by

R = l

1 + εcosφ
, (65)

where ε is the eccentricity and l is the semi-latus rectum; by
plugging Eq. (65) into Eq. (64), we obtain

�φ̃ = 1

μ

(
2π + (3 − ν)r1+ν

S

2μ(1 − ν)

∫ 2π

0

(
1 + εcosφ

l

)(1+ν)

dφ

)
, (66)

123



Eur. Phys. J. C (2019) 79 :528 Page 9 of 14 528

Fig. 7 The behavior of the
effective potential for particles
V(r) as a function of r , for
different values of σ , with
rS = 2 and L = 4. For σ = 0
the potential V (∞) = 1, for
σ < 0 the potential V (∞) = ∞,
and for 0 < σ < 1/4 the
potential V (∞) = 0

Fig. 8 Trajectories of particles with angular momentum L = 4 in the
background of DST black hole with rS = 2 and σ = 0.003. Left
panel: for bounded orbits like planetary orbit with energy E2 = 0.91.
Right panel: for the scattering of neutral particles with different values

of energy, the continuous line corresponds to E2 = 0.922 (repulsive
scattering), the dashed line corresponds to E2 = 0.92247 (attractive
scattering), and the dotted line corresponds to E2 = 0.9224

which at the first order yields

�φ̃ ≈ 1

μ

(
2π + π(3 − ν)

μ(1 − ν)

(rS
l

)1+ν
)

. (67)

Notice that, for σ = 0 and rS = 2M , we recover the classical
result of GR. It is worth mentioning that there is a discrep-
ancy between the observational value of the precession of
perihelion for Mercury, �φ̃Obs. = 5599.74 (arcsec/Julian-
century) and the total �φ̃ = �φeq + �φpl + �φobl =
5603.24 (arcsec/Julian-century), where the term �φeq is
caused by the general precession in longitude, the term �φpl

is caused by the gravitational tugs of the other planets, and the

term �φobl is caused by the oblateness of the Sun [4], which
is possibly attributed to a DST theory with σ = 1.244∗10−9.

The parameter σ turns out to be a small parameter in
matching the observed data. Thus, it is possible to write the
DST metric as a series expansion in σ ; at the first order in σ

the metric is

ds2 =
[(

1 − rS
r

)
+

(
3 − 6 ln

[
r

rS

]
+ 3

rs
r

ln(
r

rs

)
σ

]
dt2

+ dr2

(
1 − rS

r

) +
(

3 + 3rS ln
[
rS
r

]
r

)
σ

+ r2d�2 . (68)
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By comparing this metric with the Schwarzschild metric,
we can observe that the components gtt and grr contain the
Schwarzschild component plus a correction introduced by
the DST theory.

4 Collisions of spinning particles near DST black holes

The equations of motion derived from the Lagrangian theory
for a spinning particle are given by [12,14]

DPμ

Dτ
= −1

2
Rμ

ναβu
νSαβ , (69)

DSμν

Dτ
= Sμβσ ν

β − σμβ Sν
β

= Pμuν − uμPν , (70)

where D/Dτ ≡ uμ∇μ is the covariant derivative along the
velocity vector uμ, τ is an affine parameter, Pμ is the canon-
ical momentum, Rμ

ναβ is the Riemann tensor, uμ = dXμ/dτ

is the tangent vector to the trajectory, Sμν is the canonical
spin tensor, and σμν is the angular velocity. Spinning test
particles in cosmological and static spherically symmetric
spacetimes have been studied in [13]. Also, the collision of
spinning particles near a Schwarzschild black hole was ana-
lyzed in [54]. In the following, we will consider the motion
of spinning particles in the equatorial plane; that is, θ = π/2
and Pθ = 0. The modulus of the antisymmetric spin tensor
and the mass of the particle are conserved quantities and are
given, respectively, by

S2 = 1

2
SμνS

μν , (71)

m2 = −PμP
μ . (72)

Other constants of motion are given by

Qξ = Pμξμ − 1

2
Sμν∇νξμ , (73)

where ξμ is a Killing vector of the spacetime. The conserved
quantity associated with the Killing vector ∂t corresponds to
the energy of the top and is found to be

E = a(r)b2(r)Pt − 1

2
Str

(
a′(r)b2(r) + 2a(r)b(r)b′(r)

)
.

(74)

Meanwhile, the conserved quantity associated with ∂φ cor-
responds to the angular momentum of the top,

J = r2Pφ + r Srφ . (75)

Also, the Tulczyjew constraint restricts the spin tensor to
generate rotations only:

Sμν Pν = 0 . (76)

Thus, using the above equations, we find that the non-
vanishing components of momentum are given by

Pt

m
= er3 − jsr2

2b

(
a′b2 + 2abb′)

ab2	
, (77)

Pφ

m
= jr − esr

b

	
, (78)

and

Pr

m
= ±

√
a2b2

(
Pt

m

)2

− ar2

(
Pφ

m

)2

− a , (79)

where e = E/m is the specific energy, j = J/m is the total
angular momentum per unit mass and s = ±S/m is the spin
per unit mass. While a positive value of the spin means that
the spin is parallel to the total angular momentum, a negative
value means that the spin is antiparallel to the total angular
momentum. Also, 	 is given by

	 = r3 − s2r2

2

(
a′ + 2a

b′

b

)

= r3 − s2

2

(
r�′ −

(
1 − 2r

b′

b

)
�

)
, (80)

where we have defined � = ra(r). Thus, by considering that
the center of mass energy is given by

E2
CM = −gμν(P

μ
1 +Pμ

2 )(Pν
1 +Pν

2 ) = m2
1+m2

2−2gμνP
μ
1 Pν

2 ,

(81)

then the collisional energy for two spinning particles with
the same mass m = m1 = m2 in the background of the DST
black hole yields

E2
CM = 2m2

�	1	2

(
r

b2

(
e1r

3 − j1s1
2

r2(a′b + 2ab′)
)

(
e2r

3 − j2s2
2

r2(a′b + 2ab′)
)

+�
(
	1	2 − r4( j1 − e1s1/b)( j2 − e2s2/b)

)

− 1

b2

√
r

(
e1r3 − j1s1

2
r2(a′b + 2ab′)

)2
− �b2

(
	2

1 + r4( j1 − e1s1/b)2
)

×
√
r

(
e2r3 − j2s2

2
r2(a′b + 2ab′)

)2
− �b2

(
	2

2 + r4( j2 − e2s2/b)2
))

.

(82)

Possibles divergences can arise when the denominator of the
above equation is zero, i.e., at the horizon radius � = 0 and
at a spin-related radius 	i = 0. In the first case, it can be
demonstrated that the CM energy is finite at the horizon. In
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Fig. 9 The behavior of E2
CM as

a function of r , for a1 = −2,
b1 = 1, s1 = 1, s2 = 2.5,
e1 = e2 = j1 = j2 = 1,
m1 = m2 = 1 and σ = 0.1. The
red line corresponds to the event
horizon radius rH ≈ 1.54. E2

CM
diverges at the spin-related
radius

0 1 2 3 4 5
r0

5

10

15

20

ECM
2

fact, setting si = 0 for simplicity in the above expression,
with i = 1, 2, for E2

CM yields the finite value

lim
r→rH

E2
CM

m2 = (e2 j1 − e1 j2)2 + (e1 + e2)
2r2

H

e1e2r2
H

. (83)

In the case si �= 0, it is more difficult to find an analytic
expression like the above expression; however, it can be
shown that E2

CM also is finite when � → 0. For instance,
in Fig. 9 we can see that the CM energy does not diverge at
the horizon for some particular values of the parameters. On
the other hand, when 	i → 0, E2

CM diverges, indicating an
infinite CM energy at the spin-related radius. This behavior is
shown in the same Fig. 9 for some values of the parameters,
which shows that the divergence of the CM energy occurs
outside the event horizon. However, it must be analyzed if
the spinning particles can reach the divergence radius. In
[54] it was shown that, for the Schwarzschild black hole,
some particles with retrograde orbits in principle can reach
the divergence radius before reaching the horizon.

Now, rewriting Pr as

(
Pr

m

)2

= 1 − as2

r2

b2
(

1 − s2

2r (a
′ + 2a b′

b )
)2 (e − V+)(e − V−) ,

(84)

where the effective potentials V± are defined as

V± =
(

1 − as2

r2

)−1 (
(a′br2 + 2ab′r2 − 2abr)

js

2r3

±
√
a

(
1 + j2

r2 − as2

r2

) (
1 − s2

2r

(
a′ + 2a

b′
b

))2)
.

(85)

Notice that for the case 1 − as2/r2 > 0, e must be bigger
than V+ or smaller than V− for a real value of Pr . Therefore,
from Eq. (69) and Eq. (70) we obtain the following set of
momentum equations:

Ṗ t +
(
a′

2a
+ b′

b

)
Pt ṙ +

(
a′

2a
+ b′

b

)
Pr ṫ

=
(

3a′b′

2ab
+ a′′

2a
+ b′′

b

)
Str ṙ +

(
a′ + 2a

b′

b

)
r

2
Stφφ̇

Ṗr + 1

2
ab2

(
a′ + 2a

b′

b

)
Pt ṫ − a′

2a
Pr ṙ − raPφφ̇

= a2b2
(

3a′b′

2ab
+ a′′

2a
+ b′′

b

)
Str ṫ + 1

2
ra′Srφφ̇

Ṗφ + 1

r
Pr φ̇ + 1

r
Pφ ṙ

= − a′

2ra
Srφ ṙ + ab2

2r

(
a′ + 2a

b′

b

)
Stφ ṫ (86)

and the spin equations are given by

Ṡtr + b′

b
Str ṙ − raStφφ̇ = Pt ṙ − Pr ṫ

Ṡrφ + 1

2
ab2

(
a′ + 2a

b′

b

)
Stφ ṫ +

(
− a′

2a
+ 1

r

)

Srφ ṙ = Pr φ̇ − Pφ ṙ

Ṡtφ + 1

r
Str φ̇ +

(
a′

2a
+ b′

b
+ 1

r

)
Stφ ṙ

+
(
a′

2a
+ b′

b

)
Srφ ṫ = Pt φ̇ − Pφ ṫ . (87)
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Fig. 10 The behavior of the velocity square uμuμ/
(
ut

)2 and 	 as a function of r and s, with a1 = −2M , M = 1, b1 = 1, E = 1, j = −0.5; left
panel for σ = 0.1, central panel for σ = 0, and right panel for σ = −0.1

These equations imply

ṙ = 1 − a′s2

2r − as2b′
rb

1 − a′s2
2r

Pr

Pt ṫ (88)

φ̇ = −−2 + s2a′′ + 3a′ b′
b s

2 + 2a b′′
b s2

2
(

1 − a′s2
2r

) Pφ

Pt ṫ . (89)

Using the above expressions we can evaluate the velocity
square

uμuμ

(ut )2 = −a(r)b(r)2 + 1

a(r)

(
ṙ

ṫ

)2

+ r2
(

φ̇

ṫ

)2

. (90)

In Fig. 10 we plot the behavior of uμuμ/
(
ut

)2 and 	 as a
function of r and s for some small values of σ . The green
surface corresponds to the behavior of uμuμ/

(
ut

)2 and the
red surface corresponds to the behavior of 	. The intersection
between the green surface and the z = 0 horizontal plane
is the limit where the trajectories change from timelike to
spacelike character. The intersection between the red surface
and the z = 0 horizontal plane corresponds to the values for
which CM energy diverges. We can observe that in order to
reach a divergence in the energy of the center mass that the
trajectory of the STOP has to pass from timelike to spacelike,
which is similar to the collisions of spinning particles in the
Schwarzschild background [54]. We recover the case for the
Schwarzschild black hole when σ = 0. See the central panel
of Fig. 10.

5 Conclusions

In this paper we studied the motion of particles in the back-
ground of a DST black hole. We analyzed the motion of
particles in the equatorial plane, and we recovered the classi-
cal result of GR for σ = 0 and rS = 2M [73], recalling that
σ = 0 corresponds to βn = 0 due to its definition. A quali-
tative analysis of the effective potential for null geodesics
shows that the behavior for radial photons is similar to

those in a Schwarzschild’s spacetime [73]. The same occurs
for the motion of photons with angular momentum, when
−1/2 < σ < 1/4, where unstable circular orbits depend on
the coupling parameter σ . However, for σ < −1/2, all orbits
are bounded, which does not occur in Schwarzschild’s space-
time. The discrepancy between the theoretical value and the
observational value of the deflection light was studied with
respect to small deviations of Schwarzschild’s spacetime. We
have found via the geodesics formalism that the value of the
coupling constant β2 matches the theoretical result when the
current observational constraints are −8.97241×10−6

√
3 ≤

β2 ≤ 3.41708 × 10−6
√

3.
Through the study for radial motion of massive particles,

we obtain new geodesics: for σ < 0 all orbits are bounded
and for 0 < σ < 1/4 an unstable equilibrium point (ru) and
two critical trajectories approaching this point asymptotically
with the same energy Eu appear. For particles with E > Eu ,
the trajectories are unbounded. For E < Eu , we showed
that they allow for a frontal scattering that is characterized
for incoming particles from infinity to a radial distance of
closest approach, and come back to infinity. With respect to
the motion of particles with angular momentum and σ < 0,
all trajectories are bounded due to the potential at infinity.
A Schwarzschild AdS black hole [68] and the classical GR
orbits are also allowed. Interestingly, for 0 < σ < 1/4, the
spacetime has two unstable circular orbits and one stable cir-
cular orbit, and as the potential vanishes at infinity, not all
the orbits are bounded. Also, there are planetary orbits, which
allowed us to study the perihelion precession for Mercury and
the discrepancy between the theoretical and observational
values, for small deviations of Schwarzschild’s spacetime. In
this regard, we found that it is possible to attribute the discrep-
ancy to a DST theory with a coupling constant β2 = 1.244×
10−9

√
3. Since the value of the coupling constant found for

the perihelion precession is contained in the range obtained
for the bending of light, these observables can be predicted
by a unique DST theory according to observational data.

In consideration of the collision of spinning particles near
the horizon and the possibility that the DST black hole acts as
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a particle accelerator, we showed that to reach a divergence
in the center of mass energy, the trajectory of the STOP has to
pass from timelike to spacelike. Thus, for small deviations of
General Relativity, the behavior is similar to the one observed
for collisions of spinning particles in the Schwarzschild back-
ground [54].
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