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Abstract In this paper we consider the three-dimensional Gödel black hole as a
background and we study the vector particle tunneling from this background in order
to obtain the Hawking temperature. Then, we study the propagation of a massive
charged scalar field and we find the quasinormal modes analytically, which turns out
be unstable as a consequence of the existence of closed time-like curves. Also, we
consider the flux at the horizon and at infinity, and we compute the reflection and
transmission coefficients as well as the absorption cross section. Mainly, we show that
massive charged scalar waves can be superradiantly amplified by the three-dimensional
Gödel black hole and that the coefficients have an oscillatory behavior. Moreover, the
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absorption cross section is null at the high frequency limit and for certain values of
the frequency.

Keywords Gödel black hole · Hawking radiation · Quantum tunneling · Quasinormal
modes · Greybody factors
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1 Introduction

In 1974, Stephen Hawking showed that black holes evaporate and shrink because they
emit radiation, today known as ‘Bekenstein-Hawking or Hawking radiation’ [1–3]
with the contribution of Bekenstein [4]. Nowadays, Hawking radiation is an important
quantum effect of black hole physics, and it has been considered a principal tool in
understanding the quantum nature of gravity. Moreover, it is determined by universal
properties of the event horizon. Apart from Hawking’s original derivation, there are
several approaches to obtain Hawking radiation, such as the approach developed by
Christensen and Fulling [5], the quantum tunneling method, the null-geodesic method,
the Hamilton–Jacobi method [6–10] and the anomaly method developed by Robinson
and Wilczek [11]. These methods have acquired a growing interest and have been
applied to several geometries that describe black holes. In addition, the tunneling
method has recently been used for the different type of spin/spinless particle such
as a photon, vector particle, scalar particle, fermion, graviton or gravitino from a
black hole or wormhole [12–28]. The modification of the Klein–Gordon and Dirac
equations under the quantum gravity effect and their effect on the Hawking radiation
from a black hole or wormhole by tunneling have also been investigated in many papers
[18,19,21]. On the other hand, Hawking radiation causes an unsolved paradox known
as information loss [3]. Maldacena and Strominger [29] showed that the Hawking
radiation near the event horizon might be modified for a far observer from the black
hole due to the greybody factors which modify the spectrum of emitted particles, giving
semiclassical features of the black holes which allow us a better understanding of the
quantum nature of the black holes [30]. Moreover, it was shown that the Hawking
radiation is connected with the quasinormal modes (QNMs) of black holes [31,32].

The QNMs were firstly studied a long time ago [33–38]. Using gravitational pertur-
bations of a black hole spacetime, one can study the stability of the black hole. Also, it
is possible to study the stability of the propagation of probe matter fields in the back-
ground of a black hole through the QNMs, which have been obtained in several black
hole geometries and also have acquired an important role in the AdS/CFT correspon-
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dence [39,40]. Moreover, QNMs gives information about the spectrum of quantum
area of the black hole horizon, mass and also entropy. Recently, since the detection of
the gravitational waves from the merge of black holes, QNMs have gain more interest
[41]. This observation once again has proved the Einstein’s gravity [42], but it leaves
possibilities to other modified gravity theories because there is large uncertainties in
mass and angular momenta of the ringing black hole [43].

Lately, lower dimensional modified gravity models have gained many interest. One
of them is the topologically massive gravity (TMG). In the model of TMG, the general
theory of relativity is modified by adding the Chern–Simons term to the action [44].
The main feature of the TMG is to give mass to the graviton. Moreover, a chiral theory
of gravity at a special point can be constructed [45–52]. In this paper, we consider
a three-dimensional Gödel black hole (GBH) [53] in order to obtain the Hawking
temperature from the vector particle tunneling and to study the propagation of a mas-
sive charged scalar field in this background. As we will see, such propagation results
unstable as a consequence of the existence of closed time-like curves (CTC). The
effect of CTC for string theory has been investigated in [54–57]. Exact solutions for
the QNMs of black holes in 2 + 1-dimensional spacetimes can be found in [58–66].
Also, we find the greybody factor and we study the superradiance effect which is
present in this background. The four-dimensional Gödel spacetime is a exact solution
of Einstein’s gravity with a large number of isometries and was discovered by Gödel in
1949 [67]. Moreover the Gödel spacetime has a closed time-like curve through every
point. The Gödel black holes have been found [68] in three spacetime dimensions,
which are solutions to the Einstein–Maxwell–Chern–Simons theory with a negative
cosmological constant [53]. The GBH is supported by the Abelian gauge field which
also has a Chern–Simons interaction that produces the stress-tensor of a presureless
perfect fluid, in analogy with five-dimensional Gödel spacetimes and GBH found in
[69–74] in the context of supergravity theory. Interestingly, it is possible to relate,
by means of T-duality, the Gödel universes of [69,70] to pp-waves [75,76]. In [71]
a five-dimensional Schwarzschild black hole immersed in the Gödel universe was
found, which is stable against scalar field perturbations [77,78]. On the other hand the
three-dimensional GBH display the same peculiar properties as their higher dimen-
sional counterparts [53]. However, it is was shown that is not possible to obtain the
absorption probability due to one cannot to find the conjugate charges associated with
the left and the right temperatures in the CFT side [79]. The conserved charges and
thermodynamics of the GBH solution of five-dimensional minimal supergravity was
studied in [80]. Interestingly if the cosmological constant is too large in gauged super-
gravity, all closed time-like curve disappear. More recently, the QNMs and stability of
a five-dimensional rotating GBH were investigated by Konoplya and Zhidenko [81],
and other studies of stability in Gödel-like solutions have been performed in [82]. The
QNMs of the neutral scalar field of three-dimensional GBH were obtained by Li [83].
In addition to the aforementioned solutions, GBH solutions in three dimensions in the
presence of torsion was considered in [52].

The paper is organized as follows. In Sect. 2 we give a brief review of a three-
dimensional Gödel black hole. In Sect. 3 we study the vector particle tunnelling from
Gödel spacetime and we obtain the Hawking temperature. In Sect. 4 we solve ana-
lytically the Klein–Gordon equation for a massive charged scalar field and we find
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the QNMs. Then, in Sect. 5 we compute and analyze the reflection and transmission
coefficients as well as the absorption cross section, and we find the condition for scalar
waves to be superradiantly amplified by the black hole. We conclude with final remarks
in Sect. 6.

2 Three-dimensional Gödel black hole

The three-dimensional GBH is the solution of the Einstein–Maxwell–Chern–Simons
theory described by the action:

S = 1

16πG

∫
d3x

[√−g

(
R + 2

�2 − 1

4
FμνF

μν

)
−α

2
εμνρ AμFνρ

]
, (1)

where the cosmological constant is � = − 1
�2 , with � the AdS radius, and G is the

gravitational constant. The solutions for the metric and gauge potential of the action
(1) are given by Bañados et al. [53]:

ds2 = (dt − 2αrdϕ)2 − 
(r)dϕ2 + dr2


(r)
, (2)

Aψ = −4GQ

α
+

√
1 − α2l2

2r

�
, (3)

where the metric function is


(r) = (1 + α2�2)
2r2

�2 − 8Gνr + 4GJ

α
, (4)

and J and ν are integration constants which depend on the angular momentum and
mass of the GBH, while Q is an arbitrary constant. Note that the inner (r−) and outer
(r+) event horizons of the GBH are calculated as follows:

r± = l2

1 + α2�2

⎡
⎣2Gν ±

√
4G2ν2 − 2GJ

α

(1 + α2�2)

�2

⎤
⎦ . (5)

The thermodynamic properties of the GBH such as the Hawking temperature, the
Bekenstein-Hawking entropy and the angular momentum are obtained respectively as
follows:

TH = (1 + α2�2)

4πα�2

(r+ − r−)

r+
,

SBH = παr+
G

, (6)

�H = 1

2αr+
.
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For simplicity, the metric of the GBH can be introduced in the dragging coordinate
transformation as follows: dϕ = 1

2αr dt = �dt . Thus, we can avoid the dragging
effect. The new form of the GBH metric without the dragging effect is written as:

ds2 = −F(r)dt2 + G(r)dr2, (7)

where F(r) = 
(r)
4α2r2 and G(r) = 1


(r) .

3 Vector particle tunneling from a three-dimensional Gödel black hole

In this section, we study the vector particle tunneling from the GBH in 2+1-dimensions
to obtain the Hawking temperature. For this purpose, we use the Proca equation, which
describes the spin-1 vector particles and we shall solve it using the semiclassical WKB
approximation with the Hamilton–Jacobi method. The equation of the motion for the
Proca field is given by Kruglov [14]

1√−g
∂μ

(√−g�νμ
) + m2c2

h̄2 �ν = 0, (8)

where
�μν = ∂μ�ν − ∂ν�μ. (9)

Now, we solve the Proca equation on the background of the GBH given in Eq. (7) and
obtain the following equations:

− 1

h2 [F (r)]2 [G (r)]2

[
m2ψ1 (t, r) F (r) (G (r))2 − G (r) F (r)

(
∂2

∂r2 ψ0 (t, r)

)
h2

+G (r) F (r)

(
∂2

∂t∂r
ψ1 (t, r)

)
h2 − G (r)

(
d

dr
F (r)

)(
∂

∂t
ψ1 (t, r)

)
h2

+G (r)

(
d

dr
F (r)

) (
∂

∂r
ψ0 (t, r)

)
h2 − F (r)

(
d

dr
G (r)

) (
∂

∂t
ψ1 (t, r)

)
h2

F (r)

(
d

dr
G (r)

) (
∂

∂r
ψ0 (t, r)

)
h2

]
= 0 (10)

and

m2ψ1 (t, r) F (r) − h2 ∂2

∂t∂r ψ0 (t, r) + h2 ∂2

∂t2
ψ1 (t, r)

h2G (r) F (r)
= 0. (11)

Then we apply the WKB approximation:

�ν = Cν(t, r)e
i
h̄ (S0(t,r)+h̄ S1(t,r)+....). (12)
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Now, by using the Hamilton–Jacobi ansatz:

S0(t, r) = −εt + W (r) + k, (13)

in which ε is the energy of the particle, in Eqs. (10) and (11) and keeping only the
leading order of h̄, we obtain the following set of equations:

(
−F (r) (G (r))2 m2 − F (r)G (r)

( d
dr W (r)

)2
)
C0

(F (r))2 (G (r))2 − C1
( d

dr W (r)
)
ε

G (r) F (r)
= 0, (14)

−C0 ε d
dr W (r)

G (r) F (r)
+

(
F (r)m2 − ε2

)
C1

G (r) F (r)
= 0. (15)

The above equations can be written in a matrix form by considering ℵ(C0,C1)
T =

0, where the matrix ℵ is given by

ℵ =

⎡
⎢⎢⎣

−F(r)(G(r))2m2−F(r)G(r)
(

d
dr W (r)

)2

(F(r))2(G(r))2 −
(

d
dr W (r)

)
ε

G(r)F(r)

−
(

d
dr W (r)

)
ε

G(r)F(r)
F(r)m2−ε2

G(r)F(r)

⎤
⎥⎥⎦ . (16)

Therefore, the non-trivial solution can be obtain from det ℵ = 0, which yields

−
m2

(
F (r)G (r)m2 + F (r)

( d
dr W (r)

)2 − G (r) ε2
)

(G (r))2 (F (r))2 = 0, (17)

whose solution for the radial part is

W (r)± = ±
∫ √

G(r)√
F(r)

√(
ε2 − F(r)m2

)
1

dr, (18)

where F(r) = λ(r)
4α2r2 and G(r) = 1

λ(r) . The positive/negative sign show the outgo-
ing/ingoing spin-1 particles. Note that F(r) → 0 when r → rh . To solve the integral
(18), first, the function F(r) is expanded in Taylor’s series near the horizon

F(r) ≈ F(rh) + F ′(rh)(r − rh) + 1

2
F ′′(rh)(r − rh)

2. (19)

Then, the integral (18) is evaluated around the pole, where there is the event horizon
rh , using the complex integral method and the result is found as follows:

ImW± = ± πεα�2r+
(1 + α2�2)(r+ − r−)

. (20)
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Now, we set the probability of incoming spin-1 particles as 100%, where P− �
e−2ImW− = 1 to solve the factor two problem. Then, it leads to ImS− = ImW− +
Imk = 0 for incoming, and for outgoing it becomes ImS+ = ImW+ + Imk. Hence,
it is easy to see the relation that W+ = −W−. It is worth noting that there is also a
different way to solve it, which is described in Refs. [10,12,84]. Then, we obtain the
correct tunneling probability of the outgoing spin-1 particles:

P+ = e−2ImS+ � e−4ImW+ , (21)

and the corresponding tunneling rate is calculated as follows:

� = P+
P−

� e(−4ImW+). (22)

Afterwards, we compare the result with the Boltzmann formula � = e−βE , where β

is the inverse temperature, to find the Hawking temperature as

TH = (1 + α2�2)

4πα�2

(r+ − r−)

r+
. (23)

Therefore, the Hawking temperature obtained via the tunneling method coincides with
the Hawking temperature obtained from the surface gravity Eq. (6).

4 Quasinormal modes

In this section we calculate the QNMs of the three-dimensional GBH for a test charged
massive scalar field. The Klein–Gordon equation in curved spacetime is given by

1√−g

(
∂μ − iq Aμ

) (√−ggμν (∂ν − iq Aν) ψ
) = m2ψ, (24)

where m is the mass of the scalar field ψ . By means of the following ansatz

ψ = e−iωt+ikϕR(r), (25)

the Klein–Gordon equation reduces to



d

dr

(


dR

dr

)
− 


(
ω2 + m2

)
R + (

2αωr + q Aϕ(r) − k
)2

R = 0. (26)

Now, using the change of variable z = r−r+
r−r− , the Klein–Gordon equation (26) can

be written as

123



 62 Page 8 of 22 P. A. González et al.

λ2(r+ − r−)2z2R′′(z) + λ2(r+ − r−)2zR′(z)

+
(

(2αω + 2q

�

√
1 − α2�2)2

(
r+ − zr−

1 − z

)2

−λz
(r+ − r−)2

(1 − z)2 (ω2 + m2) + (−4GQq/α − k)

×(4αω + 4q

�

√
1 − α2�2)

(
r+ − zr−

1 − z

)

+(k + 4GQq/α)2

)
R = 0, (27)

where λ = 2(1+α2�2)

�2 and if in addition we define R(z) = zα̃(1 − z)β̃F(z), the above
equation leads to the hypergeometric equation

z(1 − z)F ′′(z) + [c − (1 + a + b)z] F ′(z) − abF(z) = 0, (28)

where

α̃± = ± i
(
2αr+ω + q Aϕ(r+) − k

)
λ(r+ − r−)

, (29)

β̃± = 1

2
±

√√√√1

4
+ ω2 + m2

λ
−

(
2αω + 2

�

√
1 − α2�2q

)2

λ2 , (30)

and the constants are given by

a1,2 = α̃ + β̃ ± i
(
2αr−ω + q Aϕ(r−) − k

)
λ(r+ − r−)

, (31)

b1,2 = α̃ + β̃ ∓ i
(
2αr−ω + q Aϕ(r−) − k

)
λ(r+ − r−)

, (32)

c = 1 + 2α̃. (33)

The general solution of the hypergeometric Eq. (28) is

F(z) = C12F1(a, b, c; z) + C2z
1−c

2F1(a − c + 1, b − c + 1, 2 − c; z), (34)

and it has three regular singular points at z = 0, z = 1, and z = ∞. 2F1(a, b, c; z) is
a hypergeometric function and C1 and C2 are integration constants. So, in the vicinity
of the horizon, z = 0 and using the property F(a, b, c, 0) = 1, the function R(z)
behaves as

R(z) = C1e
α̃ ln z + C2e

−α̃ ln z, (35)
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and the scalar field ϕ, for α̃ = α̃− can be written as follows:

ϕ ∼ C1e
−iωt− i(2αr+ω+q Aϕ(r+)−k)

λ(r+−r−)
ln z + C2e

−iωt+ i(2αr+ω+q Aϕ(r+)−k)
λ(r+−r−)

ln z
, (36)

in which the first term represents an ingoing wave and the second an outgoing wave
in the black hole. So, by imposing that only ingoing waves exist on the event horizon,
this fixes C2 = 0. The radial solution then becomes

R(z) = C1z
α̃(1−z)β̃2F1(a, b, c; z) = C1z

− i(2αr+ω+q Aϕ(r+)−k)
λ(r+−r−) (1−z)β̃2F1(a, b, c; z).

(37)
To implement boundary conditions at infinity (z = 1), we apply Kummer’s formula
for the hypergeometric function [85]

2F1(a, b, c; z) = �(c)�(c − a − b)

�(c − a)�(c − b)
F1 + (1 − z)c−a−b �(c)�(a + b − c)

�(a)�(b)
F2, (38)

where

F1 = 2F1(a, b, a + b − c; 1 − z), (39)

F2 = 2F1(c − a, c − b, c − a − b + 1; 1 − z). (40)

With this expression, the radial function (37) reads

R(z) = C1z
− i(2αr+ω+q Aϕ(r+)−k)

λ(r+−r−) (1 − z)β̃+ �(c)�(c − a − b)

�(c − a)�(c − b)
F1 (41)

+C1z
− i(2αr+ω+q Aϕ(r+)−k)

λ(r+−r−) (1 − z)β̃− �(c)�(a + b − c)

�(a)�(b)
F2, (42)

and at infinity it can be written as

Rasymp(z) = C1(1−z)β̃+ �(c)�(c − a − b)

�(c − a)�(c − b)
+C1(1−z)β̃− �(c)�(a + b − c)

�(a)�(b)
. (43)

We notice that β̃− can have a positive or negative real part. So, for negative values
of the real part of β̃−, the scalar field at infinity vanishes if a = −n or b = −n for
n = 0, 1, 2, . . .. Therefore, the first discrete set of QNFs corresponding to a = −n is
given by

ω = −
√

−2q

�
i(1 + 2n)

√
1 − α2�2 − α2(1 + 2n)2 + λn(1 + n) − m2 − iα(1 + 2n),

(44)
which coincide with the results found by Li [83] for a neutral scalar field. Also, it can
be rewritten as
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ω = sgn(q)
1√
2

[
−

(
m2 + α2(1 + 2n)2 − λn(1 + n)

)

+
( (

m2 + α2(1 + 2n)2 − λn(1 + n)
)2

+4q2(1 − α2�2)(1 + 2n)2/�2
)1/2]1/2 − i

1√
2

[
m2 + α2(1 + 2n)2 − λn(1 + n)

+
( (

m2 + α2(1 + 2n)2 − λn(1 + n)
)2 + 4q2(1 − α2�2)(1 + 2n)2/�2

)1/2]1/2

−iα(1 + 2n), (45)

where we have separated the real and the imaginary part of the QNFs and sgn() refers
to the sign function. Note that the above expression does not depend on the field
angular momentum k. In Fig. 1 we plot the behavior of some QNFs for positive and
negative values of the charge of the scalar field and n = 0, 1, . . . , 10. We observe
that the discrete QNFs have a negative imaginary part and the real part is positive for
positive values of the charge of the scalar field and negative for negative values of the
charge. The second discrete set of QNFs is given by b = −n and it is given by

ω =
α2l

(
−16αqr−r+

√
1 − α2l2 + l(r− + r+)(16GqQ + 4αk + iαλ(2n + 1)(r− − r+))

)

α2l2
(
16α2r−r+ + λ(r− − r+)2

) (46)

−
√

α2l2(r− − r+)2
(
8αGlqQ

(
α2

(
2Bkl + 4k2l2

(
4α2 − λ

) + λD
) + B + 4kl

(
4α2 − λ

)) + 64G2l2q2Q2
(
4α2 − λ

))
α2l2

(
16α2r−r+ + λ(r− − r+)2

) ,

where

B = λ
(

4q
√

1 − α2l2(r− + r+) + il(2n + 1)
(

4α2 − λ
)

(r− − r+)
)

, (47)

C = −λ
(
m2(r− − r+)2 + α2 (−2(4n(n + 1) − 1)r−r+

+(2nr− + r−)2 + (2nr+ + r+)2
))

−16α2m2r−r+ + λ2n(n + 1)(r− − r+)2, (48)

and

D = Cl2 + 2iλl(2n + 1)q
√

1 − α2l2(r− − r+)(r− + r+) + 16q2r−r+
(
α2l2 − 1

)
.

(49)
Now, we show some QNFs in the Figs. 2 and 3 for some values of the parameters. In
Fig. 2 we consider different values for the angular momentum of the scalar field and
in Fig. 3 we consider different values for the charge of the scalar field. We observe
that the discrete QNFs have a negative imaginary part and the real part is positive and
negative for different values of the angular momentum of the scalar field. We also
observe that the discrete QNFs have a negative imaginary part and the real part is
positive for positive values of charge scalar field and negative for negative values of
charge scalar field, which correspond to the same behavior previously described for
the first set of QNFs. Note that for a large overtone number n the QNFs present an
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Fig. 1 The behavior of QNFs, for different values of the charge of the scalar field q.; α = 0.5, ν = 2,G = 1,
Q = 1, J = 1, � = 1, k = 0, m = 1 and q = 0, 0.1, 0.5, 1, 3 (top figure), q = 0, −0.1,−0.5,−1, −3
(bottom figure)

imaginary part whose absolute value is greater than for a small overtone number (see
Figs. 1, 2, 3). Additionally, we note that β+ and β− can have both a positive real part
for a continuum range of values of ω; thus, the scalar field is null at spatial infinity for
those values of ω. The imaginary part of these continuum frequencies can be positive;
therefore, the propagation of a massive charged scalar field on a three-dimensional
GBH is unstable. In fact, notice that β̃± can be written as

β̃± = 1

2
± (A + i B) , (50)

where

A =

√√√√ z1 +
√
z2

1 + z2
2

2
, (51)
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Fig. 2 The behavior of QNFs, for different values of the angular momentum of the scalar field k.; α = 0.5,
ν = 2, G = 1, Q = 1, J = 1, � = 1, m = 1, q = 0.1 (top figure), q = −0.1 (bottom figure) and
k = 0, 1, 3, 5, 10

B = z2√
2

(
z1 +

√
z2

1 + z2
2

) , (52)

and

z1 = 1

4
+ (ω2

R − ω2
I )

(
1

λ
− 4

α2

λ2

)
+ m2

λ
− 8αq

�λ2

√
1 − α2�2ωR

− 4q2

�2λ2 (1 − α2�2) , (53)

z2 = 2ωRωI

(
1

λ
− 4

α2

λ2

)
− 8αq

�λ2

√
1 − α2�2ωI , (54)
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Fig. 3 The behavior of QNFs, for different values of the charge of the scalar field q.; α = 0.5, ν = 2,G = 1,
Q = 1, J = 1, � = 1, k = 0, m = 1 and q = 0, 0.1, 0.5, 1, 3 (top figure), q = 0, −0.1,−0.5,−1, −3
(bottom figure)

where ωR and ωI denote the real and imaginary part of ω respectively. The real part
of β̃+ is always positive; however, the real part of β̃− is positive for 1

2 − A > 0, in
this case there is a continuum of QNFs. In Figs. 4 and 5 we show the first discrete set
of QNFs and continuum QNFs (shaded region) for some values of the parameters.

A relation between unstable QNMs and closed time-like curves was found in the
rotating infinity cylinder space-times in general relativity, where was concluded that
the infinite cylinders that have closed time-like curves are unstable against scalar
perturbations [86]; therefore, one can expect that there is a deep relationship between
the existence of instability and the existence of closed time-like curves.

In Fig. 6 we plot the behavior of the normal region and the metric function grr for
some values of the parameters and different values of the parameter α, and in Fig. 7
we plot the behavior of the unstable QNMs (region above the curves) for the same
values of the parameter α of Fig. 6. For simplicity we have set q = 0 (in this case the
region of instability just depends on the values of m, α and �). In Fig. 6 we observe
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Fig. 4 First discrete set of
QNFs and continuum QNFs
(shaded region) for some values
of the parameters: α = 0.5,
ν = 2, G = 1, Q = 1, J = 1,
� = 1, m = 1 and q = 0
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Fig. 5 First discrete set of QNFs and continuum QNFs (shaded region) for some values of the parameters:
α = 0.5, ν = 2, G = 1, Q = 1, J = 1, � = 1, m = 1, q = 2 (left panel) and q = −2 (right panel)

Fig. 6 Normal region (gφφ(r) > 0) and metric function grr for G = J = � = 1, ν = 1.2 and different
values of α

that the size of the normal region increases with α, and in Fig. 7 we observe that the
lowest imaginary part of the unstable modes (the point where the curves intersect the
ωI axis) also increases with α, and in the limit α → 1 (notice that for α2�2 = 1 the
metric reduces to the BTZ black hole), the normal region extends to infinity and the
instability region is pushed to infinity. Based in this results, we are tempted to think
that there exist a straightforward correlation between the existence of unstable modes
and the existence of closed time-like curves; however, it is worth to mention that in
the five-dimensional Gödel black hole of [71] no evidence of instability was found in
the quasinormal frequencies for a test scalar field [77,78].
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Fig. 7 Region of instability
(region above the curves) for
q = 0, � = 1, m = 1 and
different values of α
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5 Reflection and transmission coefficients and absorption cross section

From the Klein–Gordon equation in curved space is possible to obtain the conserved
current jμ for scalar particles, with ∂μ jμ = 0, as

jμ = 1

2i

√−g
(
φ∗∂μφ − φ∂μφ

)
. (55)

The flux can be obtained from the radial component of this current, and using the
ansatz (25) for the scalar field, yields

F = 1

2i

√−ggrr
(
R∗∂r R − R∂r R

)
. (56)

Using this flux, we can obtain the reflection and the transmission coefficients, which
are given by Chandrasekhar [87,88]

R =
∣∣∣∣∣
F out

asymp

F in
asymp

∣∣∣∣∣ , and T =
∣∣∣∣∣
F in

hor

F in
asymp

∣∣∣∣∣ , (57)

where F in
asymp is the incident flux in the asymptotic region, F out

asymp is the reflected flux in
the asymptotic region and F in

hor is the transmitted flux to the black hole. So, in order to
calculate the above coefficients we need to know the behavior of the radial function
both on the horizon and at asymptotic infinity. The behavior at the horizon is given by
Eq. (35) with C2 = 0, choosing the negative value of α̃ and using Eq. (56), we get the
following flux on the horizon:

F in
hor = −|C1|2(2αr+ω + q Aϕ(r+) − k). (58)

On the other hand, by applying Kummer’s formula (38) for the hypergeometric func-
tion in Eq. (34), the asymptotic behavior of R(z) can be written as

R (z → 1) = D1(z − 1)β + D2(z − 1)1−β, (59)
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where

D1 = C1
� (c) � (c − a − b)

� (c − a) � (c − b)
,

D2 = C1
� (c) � (a + b − c)

� (a) � (b)
. (60)

Thus, using Eq. (56) we obtain the flux at infinity

F asymp = 2λ(r+−r−)

√√√√1

4
+ ω2 + m2

λ
−

(
2αω + 2

�

√
1 − α2�2q

)2

λ2 (−|A1|2+|A2|2),
(61)

for β = β+, where A1 = 1
2 (D1 + i D2) and A2 = 1

2 (D1 − i D2). Therefore, the
reflection and transmission coefficients are given by Sakalli [28]

R = |A2|2
|A1|2 , (62)

T = |C1|2(2αr+ω + q Aϕ(r+) − k)

2λ(r+ − r−)

√
1
4 + ω2+m2

λ
−

(
2αω+ 2

�

√
1−α2�2q

)2

λ2 |A1|2
, (63)

and the absorption cross section, σabs , is given by Gubser [89]

σabs = T
ω

= |C1|2(2αr+ω + q Aϕ(r+) − k)

2λ(r+ − r−)

√
1
4 + ω2+m2

λ
−

(
2αω+ 2

�

√
1−α2�2q

)2

λ2 |A1|2ω
. (64)

It should be mentioned that one way to find the conditions for superradiance amplifi-
cation of a scatter wave is to compute the greybody factor and the reflection coefficients.
Then, if the greybody factor is negative or the reflection coefficient is greater than 1,
then the scalar waves can be superradiantly amplified by the black hole [90,91]. So,
this condition implies that 2αωr+ + q Aϕ(r+) − k < 0.

Then we can numerically study the reflection coefficient (62), transmission coeffi-
cient (63) and absorption cross section (64) of the three-dimensional GBH for charged
massive scalar fields for different values of the parameters. Therefore, the reflection
and transmission coefficients and the absorption cross section in Figs. 8 and 9 are
plotted for massive charged scalar fields with m = 1 and with a positive charge
(q = 0.1) and a negative charge (q = −0.1). Essentially, we observe in Fig. 8,
where we have considered radial scalar field (k = 0), that the reflection coefficient
is 1 at the low frequency limit, then acquires an oscillatory behavior, reaching a min-
imum value for ω ≈ 2.04 when q=0.1 and ω ≈ 1.90 when q = −0.1, and for
the high frequency limit this coefficient tends to 1. The behavior of the transmis-
sion coefficient is opposite to the behavior of R, with R + T = 1. In addition, the
absorption cross section is not null and it diverges in the low-frequency limit and
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Fig. 8 The reflection coefficient
R (solid curve), the transmission
coefficient T (dashed curve),
R + T (thick curve) and the
absorption cross section σabs
(dotted curve) as a function of ω,
for α = 0.5, ν = 2, m = 1,
q = 0.1 (top figure), q = −0.1
(bottom figure) , G = 1, Q = 1,
J = 1, k = 0 and � = 1
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Fig. 9 The reflection coefficient
R (solid curve), the transmission
coefficient T (dashed curve),
R + T (thick curve) and the
absorption cross section σabs
(dotted curve) as a function of ω,
for α = 0.5, ν = 2, m = 1,
q = 0.1 (top figure), q = −0.1
(bottom figure), G = 1, Q = 1,
J = 1, k = 10 and � = 1
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tends to zero in the high-frequency limit. It is worth to mention that for certain val-
ues of the frequency ω ≈ 1.34, 2.70, 3.86, 4.95, 6.02, 7.07, 8.11, for q = 0.1, and
ω ≈ 0.04, 1.11, 2.47, 3.62, 4.72, 5.79, 6.84, 7.88, 8.92, for q = −0.1, the absorption
cross section is null; this oscillatory behavior has not been observed in other geome-
tries, (see for instance [92–97]). The discrete values of ω for which the transmission
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Fig. 10 The behavior of σabs as
a function of ω, for different
values of the angular momentum
of the scalar field k; α = 0.5,
ν = 2, m = 1, q = 0.1 (top
figure), q = −0.1 (bottom
figure), G = 1, Q = 1, J = 1,
� = 1 and k = 0, 2, 6, 12
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coefficient and the absorption cross section are zero can be found from the condition
c − a − b = −n, which yields

ω = 8q�α + √
λ�2(16q2 + 2λ(n2 − 1) − 8m2)

4
√

1 − α2�2
, (65)

where n is a positive integer number or zero that must satisfy the condition n2 >

1 + 4(m2 − 2q2)/λ to guarantee a real value of ω.
Then, in Fig. 9, we consider a scalar field with angular momentum (k = 10) and

we observe that the reflection coefficient is greater than 1 at the low frequency limit
for ω < 1.67 when q=0.1 and ω < 1.75 when q = −0.1, which corresponds to the
superradiant regimes. Then, for frequencies ω > 1.67 when q=0.1 and ω > 1.75
when q = −0.1, the reflection coefficient becomes smaller than 1 and acquires an
oscillatory behavior, reaching a minimum value for ω ≈ 5.48 and null when q=0.1.
For q = −0.1 the minimum value is not null; and for the high frequency limit it tends
to 1. The behavior of the transmission coefficient is opposite to the behavior ofR, with
R + T = 1. In addition, the absorption cross section is negative in the superradiant
regime and tends to zero in the high-frequency limit.

Finally, in Fig. 10 we show the behavior of σabs for different values of angular
momentum of the scalar field k and we observe that the values of the frequency ω,
for which the absorption cross section being null does not depend on the angular
momentum of the scalar field. However, these frequency values depend on the mass
of the scalar field, see Fig. 11, and on the charge of the scalar field, see Fig. 12. Also, it
is worth mentioning that for the radial and uncharged scalar field the absorption cross
section is finite in the low-frequency limit and is given by σabs ≈ 0.87, see Fig. 12.
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Fig. 11 The behavior of σabs as
a function of ω, for different
values of the mass of the scalar
field m; α = 0.5, ν = 2, q = 0.1
(top figure), q = −0.1 (bottom
figure), G = 1, Q = 1, J = 1,
� = 1, k = 0, and m = 0, 1, 2, 3
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Fig. 12 The behavior of σabs as
a function of ω, for different
values of the charge of the scalar
field q; α = 0.5, ν = 2, m = 1,
G = 1, Q = 1, J = 1, � = 1,
k = 0 and q = 0, 0.25, 0.5, 1
(top figure),
q = 0, −0.25,−0.5,−1
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6 Final remarks

In this manuscript we have studied the Hawking radiation for vector particles tunneling
from the three-dimensional GBH and the propagation of charged scalar field pertur-
bations in this background. We have obtained analytical expressions for the QNFs, by
imposing Dirichlet boundary conditions, and also for the reflection R and transmis-
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sion T coefficients and for the absorption cross section. First, we have found that the
correct Hawking temperature is recovered. Then, we found that discrete sets of QNFs
have a negative imaginary part. However, there is a range of continuous QNFs that
have a positive imaginary part, implying that the propagation of a charged scalar field
on a three-dimensional GBH is unstable as a consequence of the existence of closed
time-like curves.

Also, we have shown that the superradiance effect is present in the propagation of
massive charged scalar field in the three-dimensional GBH, when 2αωr++q Aϕ(r+)−
k < 0. Under this regime the greybody factor is negative or the reflection coefficient is
greater than 1, then the charged massive scalar waves can be superradiantly amplified
by the black hole. Outside this superrradiance regime the reflection coefficient starts
at 1 then becomes smaller than 1 and acquires an oscillatory behavior, reaching a
minimum value which is null for a positive charge of the scalar field and not null for
a negative charge of the scalar field and for a high frequency limit tends to 1. The
behavior of the transmission coefficient is opposite to the behavior of the reflection
coefficient, with R + T = 1.

Furthermore, as we pointed out, the absorption cross section is negative in the
superradiant regime and tends to zero in the high-frequency limit. Also, the absorption
cross section acquires an oscillatory behavior and is null for certain values of the
frequency depending on the mass and charge of the scalar field, but not depending
on the angular momentum of the scalar field. Therefore, a wave emitted from the
horizon with these values of frequencies or with high frequency does not reach the
spatial infinity and is totally reflected, because the fraction of particles penetrating the
potential barrier vanishes. It is worth noting that the absorption cross section is finite
in the low-frequency limit for radial and uncharged scalar field.
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