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Abstract
In this paper, we use a new asymptotically flat and spherically symmetric
solution in the generalized Einstein—Cartan—Kibble—Sciama (ECKS) theory
of gravity to study the weak gravitational lensing and its shadow cast. To this
end, we first compute the weak deflection angle of generalized ECKS black
hole using the Gauss—Bonnet theorem in plasma medium and in vacuum. Next
by using the Newman—Janis algorithm without complexification, we derive the
rotating generalized ECKS black hole and in the sequel study its shadow. Then,
we discuss the effects of the ECKS parameter on the weak deflection angle and
shadow of the black hole. In short, the goal of this paper is to give contribution
to the ECKS theory and look for evidences to understand how the ECKS param-
eter effects the gravitational lensing. Hence, we show that the weak deflection
of black hole is increased with the increase of the ECKS parameter.

Keywords: weak deflection angle, shadow, black hole, Gauss—Bonnet theorem,
gravitation, Einstein—Cartan—Kibble—Sciama gravity, gravitational lensing

(Some figures may appear in colour only in the online journal)

1. Introduction

It is known that general relativity (GR) is the most successful and accurate gravitational the-
ory at classical level [1, 2]. In GR, gravity is described as a geometric property of spacetime
continuum; thus wise generalizing special theory relativity and Newton’s law of universal grav-
itation. Furthermore, the background spacetime of GR is nothing but the Riemann manifold
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(represented as Vg ), which is torsionless. Let us recall that torsion is an antisymmetric part of
the affine connection and it was first introduced by Cartan [3].

There are various generalizations of Einstein’s GR theory; one of which is the Ein-
stein—Cartan theory that modifies the geometric structure of the manifold and relaxes the
symmetric notion of affine connection. Einstein—Cartan theory is also known as U, theory
of gravitation [4, 5] in which the underlying manifold is not Riemannian. In fact, the non-
Riemannian part of the spacetime is sourced by the spin density of matter such that the mass
and spin both play the dynamical role. In particular, Cartan proved that the local Minkowskian
structure of spacetime is not violated in the existence of torsion. So any manifold having tor-
sion and curvature (with non-metricity = 0 [6, 7]) can define physical spacetime very well.
Since the works of Cartan [3], researchers have studied the theories of gravity on a Rie-
mann—Cartan spacetime Uy over the last century [8]. Among those studies, main framework of
the Einstein—Cartan theory was laid down by Sciama and Kibble [9]; thus the theory is called
the ECSK theory, which also takes into account effects from quantum mechanics. It not only
provides a step towards quantum gravity but also leads to an alternative picture of the Universe.
This variation of GR incorporates an important quantum property known as spin. In this the-
ory, the curvature and the torsion are considered to be coupled with the energy and momentum
and the intrinsic angular momentum of matter, respectively. The gravitational repulsion effect
resulting from such a spinor-torsion coupling prevent the creation of spacetime singularities in
the region with extremely high densities. Namely, spacetime torsion would only be significant,
let alone noticeable, in the early Universe or in black holes [10]. In these extreme environ-
ments, spacetime torsion would manifest itself as a repulsive force that counters the attractive
gravitational force coming from spacetime curvature. The repulsive torsion could create a ‘big
bounce’ like a compressed beach ball that snaps outward. The rapid recoil after such a big
bounce could be what has led to our expanding Universe. The result of this recoil matches
observations of the Universe’s shape, geometry, and distribution of mass [11, 12]. The torsion
mechanism in effect suggests an incredible scenario: every black hole will create a new, baby
Universe within. Therefore our own Universe may be inside a black hole that resides in another
Universe. Even as we cannot see what is happening inside the black holes in the cosmos, any
observers in the parent Universe will see what is happening within our cosmos.

The ECSK and GR theories offer indistinguishable predictions in the low density region,
since the contribution from torsion to the Einstein equations is negligibly small. On the other
hand, in the ECSK theory, the torsion field is not dynamic, because the torsion equation is an
algebraic constraint rather than a partial differential equation, showing that the torsion field
outside the distribution of matter vanishes since it cannot disperse as a wave in spacetime.
Recently, Chen er al [13] presented a new asymptotically flat and spherically symmetric solu-
tion in the generalized ECSK theory of gravity. They have also studied the wave dynamics
of photon in the obtained geometry. It was found that the spacetime has three independent
parameters which play role on the sharply photon sphere, deflection angle of light ray, and
hence the gravitational lensing. In particular, there is a special case in the resulting spacetime
that there is a photon sphere but no horizon. In that particular case, the angle of deflection
of a light ray near the event horizon corresponds to a fixed value instead of diverging, which
is not discussed in other spacetimes. Moreover, the strong gravitational lensing and how the
spacetime parameters affect the coefficients in the strong field limit were also analyzed in [13].
It is worth noting that the gravitational lensing is a phenomenon of deflection of light rays
in curved spacetimes. Gravitational lensing can provide us with many essential signatures on
compact objects that can help us to detect black holes and test alternative gravitational theories.
For bending angle having less than 1, weak deflection lensing has already been a gruelling in
cosmology and gravitational physics [14—16]. With a key ingredient that a photon might be able
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to go around a black hole, by at least one loop, strong deflection lensing can form the shadow
and relativistic images. The Event Horizon Telescope imaged the shadow of M87* with mea-
sured diameter of 42 microarcsecond [17-22]. Recently, attempts have been made to directly
visualize the shadow of Sagittarius A* [23], the supermassive black hole in the Galactic Center,
and likely observational results will soon be revealed. Thanks to the relativistic images that we
will be able to better understand the nature of black holes and distinguish their different types
in the near future [13, 24-30]. Since Eddington’s first gravitational lensing observation [31],
numerous works have been published on the gravitational lensing for black holes, wormholes,
celestial strings, and other compact objects. For example: Bartelmann and Schneider review
theory and applications of weak gravitational lensing in [32], Bozza studies an analytic method
to discriminate among different types of black holes on the ground of their strong field gravita-
tional lensing properties [33], Tsukamoto et al show that it is possible to distinguish between
slowly rotating Kerr—Newmann black holes and the Ellis wormholes with their Einstein-ring
systems [34]. Moreover, Aazami et al develop an analytical theory of quasi-equatorial lens-
ing by Kerr black holes [35]. Virbhadra et al, show that the lensing features are qualitatively
similar for the Schwarzschild black holes, weakly naked, and marginally strongly naked sin-
gularities [36]. Ishak and Rindler study some recent developments concerning the effect of the
cosmological constant on the bending of light [37]. Keeton and Petters provide the new formal-
ism for computing corrections to lensing observables for static, spherically symmetric gravity
theories [38]. Wei et al study the strong gravitational lensing by the asymptotic flat charged
Eddington-inspired Born—Infeld black hole [39]. Moreover, Iyer and Petters obtain an invari-
ant series for the strong-deflection bending angle that extends beyond the standard logarithmic
deflection term used in the literature [40]. Also there are various works in literature related to
gravitational lensing [41-66].

Gibbons and Werner discovered a very successful approach to obtain the angle of light
deflection from non-rotating asymptotically flat spacetimes [67]. In the sequel, Werner [68]
generalized the method to stationary space times. Gibbons and Werner’s mechanism has been
applied to many curved spacetimes over the last 10 years and very successful results have been
accomplished [69—114]. Their method is mainly based on the Gauss—Bonnet theorem and the
optical geometry of the black hole’s spacetime, where the source and receiver are located at
IR regions. This approach was also extended to the finite distances [98—104].

Another important event for the black hole is their shadow cast: a two dimensional dark
zone in the celestial sphere caused by the strong gravity of the black hole firstly studied by
Synge in 1966 and then Luminet find the angular radius for the shadow [115, 116]. Material,
such as gas, dust and other stellar debris that has come close to a black hole but outside of the
event horizon to fall into it, forms a flattened band of spinning matter around the event horizon
called the accretion disk. Event horizon of black hole is invisible, however, this accretion disk
can be seen, because the spinning particles are accelerated to tremendous speeds by the huge
gravity of the black hole, by releasing heat and powerful x-rays and gamma rays out into the
Universe as they smash into each other [117-120]. Moreover, this accreting matter heats up
through viscous dissipation and radiate light in various frequencies such as radio waves which
can be detected through the radio telescopes [121—-123]. Namely, the dark region in the center is
termed the black hole’s ‘shadow’; this is the collection of paths of photons that did not escape,
but were instead captured by the black hole [125]. We can say that this shadow is actually an
image of the event horizon. The center of galaxies is a playground of a gigantic black holes.
Because of the gravitational lens effect, the background would have cast a shade larger than its
horizon size. The size and shape of this shadow can be calculated and visualized, respectively.
The radius of the black hole’s shadow calculated as rgugow = V27M = 5.2M [126, 127]. After
that, the shadows of black holes (and also the wormholes) have been investigated by several
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authors. For example: Hioki and Maeda provided a method to determine the spin parameter
and the inclination angle by observing the apparent shape of the shadow [124], Johannsen
and Psaltis verified the no-hair theorem by using the black hole shadow [128]. Nedkova et al
studied the shadow of a rotating traversable wormhole [129]. Amarilla and Eiroa analyzed
the shadow of a Kaluza—Klein rotating dilaton black hole [130]. In the same line of thought,
Abdujabbarov et al studied the shadow of Kerr—Taub—NUT black hole [131]. Next, Grenze-
bach et al studied photon regions and shadows of the Kerr—Newman—NUT black holes with a
cosmological constant [132]. Then, Johannsen et al tested the general relativity with the
shadow size of Sgr A* [133] and Giddings investigated the possible quantum effects arising
from the black hole shadows [134]. Following this, the shadows of rotating non-Kerr and Ein-
stein—Maxwell-dilaton-axion black holes were obtained by Atamurotov et al [135] and Wei and
Liu [136], respectively. Then, the shadow of Gravastar was investigated by Sakai et al [137]. In
the sequel, Perlick et al studied the influence of a plasma on the shadow of a spherically sym-
metric black hole [138]. Hereupon, Abdujabbarov et al studied the coordinate-independent
characterization of a black hole shadow [139] and Tinchev and Yazadjiev revealed the possible
imprints of cosmic strings in the shadows of galactic black holes [140]. Moreover, Wang et al
showed the chaotic behaviour of the shadow for a non-Kerr rotating compact object having
quadrupole mass moment [141]. While Amarilla ef al [142] studied the shadow of a rotat-
ing black hole in the extended Chern—Simons modified gravity, Yumoto et al obtained the
shadows of multi black holes [143]. Remarkably, Takahashi studied the shadows of charged
spinning black holes [144] and Papnoi et al obtained the shadow of five-dimensional rotating
Myers—Perry black holes [145]. Recently, Ovgiin et al have studied the shadow cast of non-
commutative black holes in Rastall gravity [146]. Furthermore, there are also various studies
on the black hole shadow such as for the tilted black holes [147], for the modified gravity black
holes [148], for the parametrized axisymmetric black holes [179], for the Kerr-like black holes
[150], which constraints on a charge in the Reissner—Nordstrom metric for the black hole at
the galactic center [151], for boson stars [152], for holographic reconstruction [153], for Kerr
black holes with and without scalar hair [154], for wormholes [155], for evaluate black hole
parameters and a dimension of spacetime [156], for black holes in Einsteinian cubic gravity
[157], and more which can be seen in references [57, 149, 158—196].

The aim of this work is to study the deflection angle provided by the regular black holes
obtained in the ECSK theory using the Gauss—Bonnet theorem and thus to investigate the
effect of torsion on the gravitational lensing. Since the torsion could be the source of ‘dark
energy’ [197], a mysterious form of energy that permeates all of space and increases the rate
of expansion of the Universe, we do want to contribute to the work on the gravitational lens-
ing effects of dark matter. The paper is organized as follows. In section 2, we briefly review
the black hole obtained in the ECSK gravitational theory [13]. We compute the deflection
angle by the ECSK black hole using the Gibbons and Werner’s approach (i.e., via the
Gauss—Bonnet theorem) in the weak field regime in section 3. Section 4 is devoted to the
study of the deflection of light by the ECSK black hole in a plasma medium. We then intro-
duce the rotating generalized ECKS black hole and study its shadow cast in sections 5 and 6,
respectively. Finally, we present our conclusions in section 7.

2. Black holes in the generalized Einstein—Cartan—Kibble—Sciama gravity
In this section, we briefly review the black hole solution in generalized ECKS theory. The

action for the generalized ECKS theory with Ricci scalar R and torsion scalar 7 is given by
[13]:



Class. Quantum Grav. 37 (2020) 225003 A Ovgiin and | Sakalli

1 [
— 4/ —o | —
S—/dx\/ g{ e (RTRT)|, (1)

where
D l b l Bary o « [
R=R + ZQU‘B"! Qaﬁ’\f + EQQB"/Qﬁar + Q (MBQA/‘[))"/ + 2Q (kf?’

T = 01045,0"" +@:005,0"" + a:0%,7Q". . @)

Note that R and R stand for Riemann curvature scalar related with general affine connection

F“W and Levi-Civita Christoffel connection F“W, respectively. Moreover, tensor "W shows

the torsion of spacetime defined by Q°,, = f"w — f“’w. The affine connection f“’w can be

calculated by using the Christoffel connection I, : f“w, =1, + K, with the contorsion
tensor: K¢, = H =00, — QV‘*M].
The static spherically symmetric spacetime in the generalized ECKS theory of gravity (1)

is given by [13]

2
ds® = —f(ndr* + % +r2(d6” + sin 0 dg?), ©)

where H and F are only functions of the polar coordinate r:

2

2
f=1-22, 1
r r
2
1 2, (L=Ngm+ (ym* — g*)\/1? = 2ymr + ¢*
8N = —F5—=——>z |7y — Dm"+ )
(y*m* — q%) r

“4)

where m, g, and ~y are constants. It is noted that this solution (4) is asymptotically flat because
f(r) and g(r) go to 1 when r approaches to spatial infinity. Moreover, the solution (4) reduces
to the Reissner—Nordstrom black hole for v = 1 and thus to the Schwarzschild black hole
(¢ = 0). Remarkably, this solution corresponds to a scalar—tensor wormhole if the parame-
ter replacement g*> — —f3, ym — m, and (ym?> — ¢*)/(7(y — 1)m*) — 7. The event horizon is
found to be [i.e., upon the condition of g(r) = 0]

= ym+/ym? — g (5)

Thus, the surface gravity [199] can be computed as

o — l g" —dgu _ l @df(”)
2 \/ —gy dr r—ry 2\ f(r) dr
2

ym’ — g’

VP = @am P — @)

ECKS parameter y can have a major impact on the path of photons moving in the cosmos.
We shall try to take this effect into account in the upcoming sections.

F=ry

(6)
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3. Deflection angle of photons by black hole in the generalized
Einstein—Cartan—Kibble—Sciama gravity using Gauss—Bonnet theorem

In this section, we study the weak gravitational lensing in the background of the ECKS black
hole by using the Gauss—Bonnet theorem. To do so, we first obtain the optical metric within
the equatorial plane 6 = 7 /2:

1 r?
d? = dr? + ——do?. 7
L= e T e @

Afterwards, we calculate the corresponding Gaussian optical curvature K = R‘“igcal"“ :

2F 08 (EF ) r=280) (£ 0)'r+ £ 1) (rdg () +280) £7 () =2(f 1) ()

2f(nr
®)
which reduces to the following form in the weak field limit approximation:
mq? mg®  m 7 Mgy my
2 22,2
myq~ my meq~y
- 3/2 ;; —r—3—3/2 I C))

To calculate the weak deflection angle, we define a non-singular region Dy with boundary
O0Dg = v; U Cg and then apply the Gauss—Bonnet theorem [67]:

//IC ds + fn dt+ ) 0; = 2mx(Dp). (10)

Dgr JDg

where « is for the geodesic curvature. Note that ; is the exterior angle at the ith vertex. One
can choose the region which is outside of the light ray and the Euler characteristic number
X(Dg) = 1. Then, one can calculate the geodesic curvature kK = g (Vm’y, 7) using the unit
speed condition g(7,7) = 1, with # the unit acceleration vector. When R — oo, two jump
angles (0o, 0s) is w/2. Then, the Gauss—Bonnet theorem can be written as follows:

T+
//ICdS+fmdtR§°°//ICdS+/ do = . (11)
0

Dgr Cr Doo
Note that x(7z) = 0. Since +; is a geodesic, we have
K(Cr) = |V, Crl: (12)
in which Cg :=r(¢) = R = const. The radial part is calculated as follows:
2

(VeuCr) = Ci (0,Gr) + T, (CF) (13)

The first term in the above equation vanishes and second term is found by using the unit speed
condition. Then, ~ is obtained as follows:
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m=1,q=1

15}
10f

0.5

0.0 . . . ! L L . 1 . . . I n L . 1 . . . 1

Figure 1. « versus b to see the influence of v parameter on weak deflection angle.

Jfim w(C) = fim [5,C4]

1
- = (14)

At the large limits of the radial distance, one gets
lim dr — (R)dep. (15)
R—00

Combining the last two equations, one can get x(Cgr)df = dy. Using the straight light
approximation, we find r = b/sin ¢, where b is the impact parameter. Hence it is shown that
Gauss—Bonnet theorem reduces to this form for calculating deflection angle [67]:

a:—// KC ds. (16)
0 Jgks

Solving the above integral with the Gaussian curvature, the weak deflection angle up to the
second order terms is found as follows:

b 4b2 b an

It is obvious that the ECKS parameter v increases with the weak deflection angle as seen in
figures 1 and 2.

4. Deflection angle of photons in plasma medium by black hole in the
generalized Einstein—Cartan—Kibble—Sciama gravity

In this section, we study the effect of a plasma medium on the weak deflection angle by gen-
eralized ECKS black holes. The refractive index of the cold plasma medium 7n(r) is obtained

7
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m=1,g=1

Figure 2. « versus b to see the influence of v parameter on weak deflection angle.

as [69]:

n(r)y=4/1- w_g (M) (18)

who \ oo

in which we is the electron plasma frequency and w is the photon frequency measured by an
observer at infinity. Afterwards, we calculate the corresponding optical metric:

OBt 3 i 3.7 n(r) [ dr?
oo = o aal = 5 (547 07). "

The Gaussian curvature for the above optical metric is calculated as follows:

2 2 2.2 2
Yme m MWe m q We q
K ———M - — -2 —— — — +5 3=, 20
Woo 213 r3 Welr3 13 * Woo 21 * r* (20)
We have also
do r? 172
— 1 =nR)| —— , 21
dole, " )<f(R)> ey
which has the following limit:
. o
Jm | =1 (22)

At spatial infinity, R — oo, and by using the straight light approximation r = b/sin ¢, the
Gauss—Bonnet theorem reduces to [67, 69]:

) T+ dO’ ) T R
lim | {/{g d_} dp=m— ngglc/o /L K ds. (23)

R—00
Cr sin ¢

8
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We calculate the weak deflection angle in the weak limit approximation as follows:

2 2
Ymwe ym Mwe m

2 1M Ly 22 (24
bws? + b + bws? * b 24

FuwlT

ar~—5/4 TS

2
q-m
~3/455 +2

Hence, we show that the photon rays move in a medium of homogeneous plasma. Note that
we/woe — 0, equation (24) reduces to equation (17), and thus the effect of the plasma is ter-
minated. Moreover, the solution (24) with w./w., — 0 reduces to deflection angle of Reiss-
ner—Nordstrom black hole for v = 1 and it also corresponds to a scalar—tensor wormhole if
the parameter replacement g*> — — 3, ym — m, and (ym?> — ¢*)/(y(y — D)m?) — 1.

5. Rotating generalized ECKS black hole

Here, we briefly review the method of Newman—Janis without complexification presented by
Azreg-Ainou [198] for transforming static spacetimes to stationary spacetimes. The generic
four dimensional static and spherically symmetric spacetime can be written as follows:

2
a5 = —F(rdi + ;‘(Lr) + h(r) (d6° + sin® 0dg?) . (25)

First, the above metric is transformed into the advanced null Eddington—Finkelstein (EF) coor-

dinates (u, r, 6, ¢) by defining the transformation of du = dr — ;J%g. Afterwards, the metric in

EF coordinates takes the following form [191]:

ds? = —f du® — 2, /i du dr + h (d6* + sin* 0d¢?) . (26)
8

Secondly, one should write the inverse metric g/ with a null tetrad Z! = (I, n*, m", m")
using the form of g" = —IFn" — I"n" 4+ m"m” + m”m", in which m" is the complex
conjugate of m'. Moreover, the tetrad vectors must satisfy the following relations:
LI" =nun" =mm" = 1l,m" =n,m* =0, and [,n* = —m,m" = —1. Using the above con-

ditions, null tetrads become

g g 1 i

"= n'= /26" - 20" m'=—|6) . 27
S A R \/2h<9+sin9¢> @7

Afterwards, using the transformation r — ¥ = r +iacos 0, u — u' = u — ia cos 6, with the
spin parameter a.

Third step is to use complexification which is proposed by the Azreg-Ainou [198]. Using
this method: the metric functions f(r), g(r) and A(r) transform to F = F(r,a,0), G = G(r,a, 0)
and H = H(r, a, 0), respectively. Then we can write the null tetrads in terms of new metric

functions:
=g "= \/ 955 — géff, (28)

T/ . . o,
't — NGT <1a sin 6(6L — o) + &) + sir1952”> . (29)
Then the inverse metric become:

g/l,l/ — _l/ynlll _ l/l/n/y + m/,u,ﬁl/l/ + m/yﬁl/,u,. (30)

9
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Hence, we can write the new spacetime metric in the EF coordinates as follows

ds2:—qu2—2\/Edudr+2asin29 F—\/E du d¢
G G
2 2 | F 2
H + a” sin 9(2 G—P)]dd). (31

After that, we transform the above metric to the Boyer—Lindquist coordinates using
du = df + e(r)dr and d¢ = d¢’ + x(r)dr:

[F
+2a Zismgﬁdrd¢+l¥dﬁ—%ﬁﬁe

k(r) + a®
=7 - 32
= o + @ 32)
a
A 33
O o v @ 9
g(r)
k(r) = | =—=h(r). (34)
fr
Fixing some terms, one can get the unknown functions F, G, and H:
(g(Mh(r) + a* cos* OH)H
F(r)= 35
") =" + @ cos 02 (33)
h 2 cos” 6
G(r) = g(r)h(r) 4+ a~ cos . (36)
H
Hence, the stationary spacetime metric is found as follows:
H o k +a® cos’ 0
d* = ——— | (1 - ———+— | dP — —————d/?
S Tkt cos?d [( k+ a? 00529> A "
2a0 sin” 0 s 5 2
m dt dd)— (k+a COS 9) d9
[(k + a2)2 — a*Asin® 9} sin® 0 ,
— d . 37
k + a* cos? 0 ¢ 37

in which o(r) = k — gh, A(r) = gh+a?, and k = %h(r). Here h(r) = r* and the other

metric functions of the rotating black hole solution are given by

2,2 2)2 22
o(r)y=2ymr+ |— (ym q) (27mr 4 r) 2r2—z]2—r

(('ym2 — @) 2 mr + @+ 12+ m(y — 1) (ymr — qZ))

2

(38)

A(r) = —2ymr+ @+ q2 + 77, (39)

10
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Shadow of a Rotating Generalized ECKS Black Hole

10.0 A
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X

Figure 3. m =y =1 and the plots are for ¢ = 0.1. The dashed line is for the
Schwarzschild black hole.

and

e | (2 = )" (2mr — ¢? — 1) 2

((7m2 — @) /=2ymr + >+ 2+ m(y — 1) (ymr — qz))2

(40)

The horizons of the rotating generalized ECKS black hole are obtained from the condition
of g = 0 (one can see that g,, = LA(”) .In the non-rotating limit, & = lim, .o H, the horizons
are easily obtained from A(r) = 0.

6. Shadow cast of rotating generalized ECKS black hole

In this section, we employ the Hamilton—Jacobi formalism to study the null geodesic equations
in the rotating generalized ECKS black hole spacetime. Our aim is to calculate the celestial
coordinates parametrized with the radius of the unstable null orbits. Then, we shall obtain the
shadow of rotating generalized ECKS black hole. To this end, we first describe the motion of
the particle on the rotating generalized ECKS black hole by the following Lagrangian:

1
L= Eguafc"ic”, (41)

where ¥ = u” = dx” /d\; let us recall that u” is four velocity of particle with the affine param-
eter A. Since the conjugate momenta p, and p,, are conserved because of the symmetry of black
hole, the metric does not depend on the variables # and ¢. Afterwards, we can write energy £

1
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Figure 4. m =y =1 and the plots are for ¢ = 0.2. The dashed line is for the
Schwarzschild black hole.

and angular momentum L:

oL . ) oL . .
E=p = 5 = gn®+guts, L= —py= 99 = —8psP — gl 42)

Then, one can get

(r* 4 a®)P(r)

Yt = —a(aE sin®0 — L) + A0) , (43)
L _ L aP(r)
X = (aE sin’ 9) A(r)’ “+4)

in which P(r) = E(+*> + a®) — aL. To find the geodesics equations, we use the Hamilton—Jacobi
(HJ) equation:

s 1, 08 8

— == . 45
ox 2% ox o )
One can define the following ansatz as follows
1
S = E;A — Et + Lo + S,(r) + Sp(0). (46)

Note that p is proportional to the rest mass of the particle. For the stationary black hole
spacetime, the HJ equation becomes:

12
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Figure 5. m =y =1 and the plots are for ¢ = 0.3. The dashed line is for the
Schwarzschild black hole.
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The solutions for the S, and Sy, respectively, are given by [150]:
2%~ 1 VRO, (48)
r
0Sy
ZW = ++/0(0), (49)
with
R(r) = P(r)* — A(r) [(L—aE)* + Q] , (50)
L2
O0) = Q + cos’ 0 (azE2 - 2) . 51
sin” 6

Here, R and © are effective potentials for moving particle in radial r and angular § directions,
respectively. Note that Carter constant can be calculated as follows: Q = IC — (L — aE)? where
IC is a constant of motion. R(r) and O(6) should be positive for the photon motion. We can
introduce the impact parameters 7 and &:

Q

5 ﬁ’

L
= (52)

13
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Figure 6. m =1 and ¢ = 0.1, the plots are for v = 0.94. The dashed line is for the
Schwarzschild black hole.

where E is the energy and L stands for the angular momentum. Equation (41) can be rewritten
in terms of dimensionless quantities 77 and £ for the photon case:

1
R = [P +a)) —ag]” = A= +n]. (53)

Afterwards, the equation of S, is obtained as follows [191]:

a8, \*
( o ) + Verr = 0, (54

where the effective potential Vg:

1
Var = 5o [(7 + ) - agl’ = Afa—©7%+1). (55)

To find the unstable circular orbits, we maximize the effective potential:

Wer| _OR|
G| =0 o R=7g| =0 (56)

r=rp

Verr =

o

in which r = r¢ is the radius of the unstable circular null orbit. It is noted that we locate the
photons and the observer at the infinity (x = 0) and assume that photons come near to the
equatorial plane (§ = 5). Then, we solve equation (56) to find the celestial coordinates:

P —rA—d?
S aon oD

14
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Figure 7. m =1 and g = 0.1, the plots are for v = 0.95. The dashed line is for the
Schwarzschild black hole.

B PAA — r(r — 1)
77 - az(r _ 1)2 . (58)

Here r corresponds to the radius of the unstable null orbits. The apparent shape of the shadow
cast is found by using the celestial coordinates [124]:

Y= lim <_rg sinfy & ) (59)
o r (r0.6,)
do
X = lim ré— ) (60)
oo\ Tdr g,

in which (rg, 8y) is for the coordinates of the observer. Hence, the limiting the celestial
coordinates become

y=—5_ (61)
sin 6,
X = i\/n +a? cos 63 — x? cot? by, (62)

where the shadow corresponds to the parametric curve of ¥ and X in which r stands as a
parameter. Note that there is a special case in which the observer is on the equatorial plane of
the black hole with the inclination angle 6y = /2 [172]. Hence, we have

v =—¢

63
X==xn ()
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Figure 8. m =1 and ¢ = 0.1, the plots are for v = 0.99. The dashed line is for the
Schwarzschild black hole.

Shadows of a Rotating Generalized ECKS Black Hole
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Figure 9. m = 1 and a = g = 0.1, the plots are for different values of .

Then the radius of the shadow can be calculated as follows:

V44X =84n=R (64)
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301

20+~

Figure 10. Photon rings are shown at inclination angles i for m = 1, a = ¢ = 0.1, and
v =0.93.

Hence

‘= 2ry (2ymry — ¢*) — (ro + ym) (r§ + a?)
a (r() - ’Ym) ’ (65)
4a2r5 (7mr0 — qz) — r% [ro (ro — 3ym) + 2q2]
77 = 2 o 2
a*(ro — ym)

Shadows of the rotating generalized ECKS black hole having different values of spin @ and
parameter y are depicted in figures 3—10. The region bounded by each curve corresponds to
the black hole’s shadow where the observers are located at spatial infinity and in the equatorial
plane (i = 7/2). Region in angular momentum space is occupied by the plunge orbits for par-
ticles in parabolic orbits, or photons, incident upon a black hole from infinity. Left/right side
of the figures correspond to the prograde and retrograde circular photon orbits, respectively.

It is worth noting that since the rotating ECKS black hole under consideration is a gen-
eralization of the Kerr—Newman black hole. Once the rotation ceases, ECKS black hole
reduces to the Reissner—Nordstrém black hole for v = 1 and thus to the Schwarzschild black
hole (¢ = 0). It turns out that the shadow of an ECKS black hole is a zone covered by a
deformed circle. It can be deduced from figures 3—10 that the shadow of a black hole is
affected by the parameters a and . Indeed, for a given g, the size of a shadow decreases as the
parameter a increases and the shadow becomes more distorted as we increase the value of
parameter 7.

7. Conclusions

In this paper, we have made a detailed analysis of the gravitational lensing problem of four
dimensional ECKS black hole in the weak field approximation. For this purpose, we have first
considered the static ECKS black hole. After employing the Gauss—Bonnet theorem and a

17
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straight line approach, we have obtained the light deflection angle by the static ECKS black
hole at the leading order terms. Furthermore, we have also computed the deflection angle of
light from the static ECKS black hole, which is in a plasma medium. Then, we have extended
our study to the rotating version of this black hole. To derive the stationary ECKS black hole
solution, we have used the Newman-Janis algorithm without considering the complexification.
Then, we have thoroughly discussed the gravitational lensing in the rotating ECKS black hole
geometry.

For both cases (static and stationary), we have shown that the ECKS parameter 7y plays an
important role on the path of the photons moving in the curved spacetime of the ECKS black
hole. In particular, it is seen that the weak deflection is increased with the increase of ECKS
parameter +; the latter remark may shed light on the presence of the ECKS black holes in
future cosmological observations. Another remarkable point is that as w, /w-, — 0, the plasma
effect on the deflection angle is vanished. It is also worth noting that the deflection angle
obtained with the Gauss—Bonnet theorem has been computed by taking the integral over the
particular domain, which is outside the impact parameter. Thus, our gravitational lensing com-
putations include the global effects. Shadows of the rotating ECKS black hole with different
values of spin a and parameter v have been depicted in figures 3—10.

Finally, our findings have the potential to indirectly indicate the presence of the torsion that
may be the source of dark energy, a mysterious type of energy that permeates all of cosmos
and increases the Universe’s rate of expansion [200]. Therefore, due to its impact on the grav-
itational lensing, indirect proof of the torsion will provide a sound foundation for the scenario
in which each black hole’s interior is a new Universe.
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