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Abstract In a seminal paper, Alcubierre showed that Einstein’s theory of general
relativity appears to allow a super-luminal motion. In the present study, we use a
recent eternal-warp-drive solution found by Alcubierre to study the effect of Hawking
radiation upon an observer located within the warp drive in the framework of the
quantum tunneling method. We find the same expression for the Hawking temperatures
associated with the tunneling of both massive vector and scalar particles, and show
this expression to be proportional to the velocity of the warp drive. On the other hand,
since the discovery of gravitational waves, the quasinormal modes (QNMs) of black
holes have also been extensively studied. With this purpose in mind, we perform a
QNM analysis of massive scalar field perturbations in the background of the eternal-
Alcubierre-warp-drive spacetime. Our analytical analysis shows that massive scalar
perturbations lead to stable QNMs.
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1 Introduction

General relativity is a playground for many unexpected solutions. One of them was
introduced by M. Alcubierre in 1994, and is known as the eternal-Alcubierre-warp-
drive (EAWD) spacetime [1,2]. This solution is found in the original theory of the
general relativity and it allows super-luminal motion by expanding (contracting) the
spacetime behind (in front of) an observer within the spacetime [3]. It is noted that the
observer sits in a locally flat region of the spacetime, which is the so-called warp bub-
ble. However, the energy-momentum tensor of EAWD spacetime violates the energy
conditions (weak, dominant and strong) in that weak energy condition requires a neg-
ative energy density [4]. Today, it is known that negative energy only arises in certain
special cases of QFT, such as the Casimir effect or dark energy in cosmology. On the
other hand, the basic premise of EAWD spacetime is widely accepted to have occurred
during in the inflationary era of the early universe; when the relative speeds of two
co-moving observers in this era are considered, super-luminal motion appears to occur
without violating special or general relativity.

Hiscock was the first to study quantum effects in the EAWD spacetime and showed
that the stress—energy diverges if the apparent velocity of the warp bubble (around the
spacecraft) exceeds the speed of light [5]. Finazzi et al. [6] extended Hiscock’s results
by investigating semiclassical instability in dynamical warp drives. Recently, various
studies [7—16] have appeared in the literature, inspiring us to use the EAWD metric in
our present study.

The discovery of black hole radiation by Hawking and Bekenstein [17-24] showed
that black holes are in fact not black, instead they are “gray” and thermally radiate.
Today, Hawking radiation is studied in an elegant and widely used way through a
quantum tunneling model, among others (see for example [25-69] and references
therein). In the present work, we consider the Hawking radiation of massive scalar
and vector particles from the EAWD spacetime. The effect of GUP [70] on the Hawking
radiation of the EAWD spacetime will also be considered.

QNMs are another important means of probing spacetimes. They represent the
characteristic resonance spectrum of a black hole. By taking the back reaction effects
into account, it was shown by Parikh and Wilczek [71] that black holes can radiate
energy with a non-thermal spectrum. Although QNMs dominate in the response of
a black hole to external perturbations, they are affected by Hawking radiation [72—
77]. In the last decade, studies of both QNMs and Hawking radiation have gained
momentum (see for instance [78—84]). In fact, such works show that the black holes
are good testing grounds for quantum gravity theory [85-101] . Along the same
line of thought, in the present study we want to explore the quantum gravitational
outcomes of the EAWD spacetime by considering QNMs in addition to Hawking
radiation.

The Laser-Interferometer-Gravitational-Wave-Observatory (LIGO) has recently
made the ‘discovery of the century’ by detecting the gravitational waves originating
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from a merger between two black holes [102]. This event once more proves Einstein’s
theory of the gravity. QNMs of gravitational waves provide critical information about
the structure of black holes. Thus, QNMs can be a tool to test general relativity and
possible deviations from it [103,104]. Moreover, in the AdS/CFT correspondence,
QNDMs are used to study the rapidity of a thermal state at the boundary where ther-
mal equilibrium is established [105]. Today, there are many analytical and numerical
works on QNMs in the literature (see for instance [106—-138] ). To study analytical
QNMs, one should solve the field equation on the considered geometry and derive the
one dimensional Schrodinger equation or the so-called Zerilli equation [139] in terms
of the tortoise coordinate 7, :

d>y

2
dr

— [a)z _ V(r*)] v, M)

where o is the frequency of the QNM. In general, w is labeled by a discrete quantum
number (n = 0, 1, 2, ...) and has the following asymptotic form [140, 141]

. 1
w, = (offset) + in (gap) + 0 (%> as n — oo. 2)

Here, the “gap” and “offset ”” are complex parameters that are determined by the precise
form of the spacetime-dependent potential barrier seen in Eq. (1). In fact, the real part
of w shows the temporal oscillation and its imaginary part describes the exponential
decay.

To compute the QNMs of the EAWD spacetime, we consider the massive Klein—
Gordon equation (KGE). We show that the radial part of the massive KGE reduces
to a hypergeometric differential equation after some manipulation. Thus, we demon-
strate how one can analytically derive the complex QNMs by applying the appropriate
boundary conditions.

The outline of the paper is as follows. In Sect. 2, we briefly introduce the EAWD
spacetime. Section 3 is devoted to calculating the Hawking temperature of this space-
time using the vector particles’ quantum tunneling with the help of the semi-classical
Hamilton—Jacobi method. In Sect. 6, we consider the quantum tunneling of scalar par-
ticles in the EAWD spacetime. We also study the GUP effect of quantum gravity on the
EAWD’s Hawking radiation. In Sect. 5, we analytically study the massive scalar field
perturbations in the background of the EAWD spacetime and represent exact QNMs.
We draw our conclusions in Sect. 6.

2 EAWD spacetime

The EAWD spacetime is described by the following line-element, which was derived
by Alcubierre [1,2]:

ds? = —c%dr® + [dx — v(r)de]* + dx? + dy>. 3)
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Fig. 1 Two-dimensional
visualization of an Alcubierre
drive, showing the opposing
regions of expanding and
contracting spacetime that
displace the central region [142]

Here, v(r) is the velocity of the spacecraft’s moving frame and r represents the distance
from the center of the bubble, which is given by

r= \/(x —vot)? +y2 + 22, (4)

where vy represents the warp-drive velocity [6]. Furthermore, it is convenient to
introduce a new function, f(r), given by v(r) = vo f(r). f(r) should be a smooth
function satisfying the conditions f(0) = 1 and f(r) — 0 if » — oo. For the sake
of simplicity, in this paper, we shall consider the following 1 + 1 dimensional EAWD

metric [6]:
ds? = —c%d? + [dx — v(r)dt]?, (5)

where r is given as r = x — vpt. The choice of f(r) is not unique: we select the
following simple bell-shaped function [6]

1

fr = cosh(r/a)’

(6)

Note that when vy > ¢, we have the super-luminal warp drive. One can write the
above metric as a Painleve metric (Fig. 1):

ds? = —c2de® + [dr — v(r)dt]?, )

where
v(r) = v(r) — vo. (8)

We also note that v(r) < 0 because the warp drive is right going i.e., v(r) < vy,
with v(r) > 0. Introducing « = vg/c, the shift velocity becomes

v(r) = ac |: 9

1
cosh(r/a) 1] ’

It is interesting to point out that two horizons appear when o > 1, by setting
v(r) = —c. The center of the bubble is located at r = 0, while the horizons are

located at
rhzrm::Faln <,3+\/,32—1), (10)
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with

= -1, (11)

3 Quantum tunneling of vector particles in EAWD

The relativistic field equation for a massive vector particles is governed by the Proca
equation (PE) [32,33]

L (Ve + me v — g (12)
NE W ’

where
W =0,W) —0,W,. (13)

In our setup, we shall solve the PE in the background of EAWD spacetime (7). The
solution is proposed in terms of the WKB approximation as follows

i

W, = Cy(t, r) exp (h (So(t.r) + R Si(t. )+ -+ ~)). (14)

Using Eqgs. (12) and (14), one finds

225 2 2
0 [ m2c2o(r) + (Btig(t,r))(arso(l,r))} c, - [@S@%} Cy, (15)

0— [—(arSo(t, )’ + §c2 - ﬁz(r))m2c2j| ¢,
C

n |:—m20217(r) + (H,fg(t, r))(0rSo(t, r))] . (16)
By using the symmetries of the spacetime (7), one may choose the action as
So(t,r) = —Et + R(r), a7
then by making a substitution from Eqgs. (15) and (16), we find out
[—mzcz,-,(rc)z_ ER/(r)] cr — [(R/(r))z;r m2cz] o a8
[—E2 + (2 C_zﬁz(r))mzcz} i [_mzczﬁ(rc)z— ER/(r)] C=0. (19

The physical meaning from these equations can be revealed after we consider a
2 x 2 matrix equation. In particular, we can choose a matrix & and multiply it with a
transpose of a vector (Cq, C2), yielding the matrix equation

E(C, T =0. (20)
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This matrix has the following non—zero elements

—m%c25(r) — ER'(r)

Bin=E8n= 3 21
C
R/2 —|—m202
En=-"—"—>5—, (22)
C
. —E2 4 (c? = 32(r))m2c?
Ty = = . (23)

In order to solve for the radial solution we need to consider det £ = 0, which leads
to the following differential equation

m* (=2 + @ (r)*) R? —=2Ev (r) R'(r) — ¢*m? + E?)

—_ =0. 24
> (24)
This equation can be easily solved for the radial part
Ev(r) T \/c4m2 (50) — ) + E2c2
R: = / — — dr. (25)
((r) —c) (v(r) +0)
This integral is singular at the horizon v(r, = r12) = —c. Thus, by expanding in
series the velocity near the horizon we find
- 2
v(rp) = —c + K12 (F—F1,2)+O[(V—r1,2) ] (26)
where we have defined the surface gravity as
dv(r) cla—1)/B%2-1
k1o = oy = £ VT @7)
dr ap

It is not difficult so see that we find non-zero contribution only for the ingoing
particles moving from the outside to the inside of the EAWD

E d
R_(r = ry 2>:/——’. (28)
’ k12 (r —r12)

As was noted in [6], the surface gravity associated with the first horizon is positive
k1 = k > 0, while the one associated with the second horizon is negative x» =
—k < 0. The physical significance of these two horizons is that they represent a
black and a white horizon, respectively. As was pointed out in Ref. [6], the choose
of the horizon does not lead to a different Hawking temperature in absolute value,
therefore we may consider the two surface gravities to have the same absolute value
i.e. k = |k 2]. It is worth noting that ‘in 3 + 1 EAWD spacetime’, while one side of
the spacetime is expanding (white horizon), the other side of the spacetime contracts
(black horizon). In other words, when the particles tunnel from outside to inside near
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the black horizon, the particles in the vicinity of the white horizon conversely tunnel
from inside to outside. The tunneling rate is related to the imaginary part of the action
in the classically forbidden region, which is given by

[~ e 2mS$ (29)

Therefore, we can use the following identity

1
Iim Im——— =#d(r —ry), 30
ef}) mr—rh:i:ie (= rn) 30)

and find a non-zero contribution only for the ingoing radial part R_(r):
TE
ImR_(r) = —, ImR4(r) =0. 31
K

We can define the tunneling probability from outside to inside the warp drive by
the following relation

exp (—2ImR_) 2nE
= —exp|l-———). (32)
exp (—2ImRy)
Comparing the above relation with the Boltzmann equation I'p = exp(—E/T),
we get the Hawking temperature as follows

ok flm)
Th=op =wm 59

Equation (33) shows that an observer inside the warp drive experiences a thermal
flux of Hawking quanta. In fact, this phenomenon is different from the black hole
radiation in which the Hawking quanta tunnel from inside to outside of the horizon.
However, the right way to recover the above result for the Hawking temperature is to
consider the invariance of canonical transformations [51,52,55,56,66,67] . Namely,
by considering a closed path, which goes from outside, r = r;, (i.e, just outside of the
horizon) to r = r ¢ (just inside of the horizon):

rf . ri
fm: f pindr + / PP dr, (34)
r,- rf

the total quantum tunneling rate is found to be a sum of the spatial and temporal
contributions. To see this, we draw attention to the pole located at the horizon r =
rp, = r12 seen in Eq. (25) with v(r;) = —c. But, we can shift the pole by using the
Feynman prescription i.e., r, — ry + ie:

= 422 (52 _ 2 2.2
Imyﬁp,dr:nm :Im7§ Ev(rn) F yem> @) C”Ecdr}, (35)

e—0 () — ) (rp)(r —rp £ie)
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in which the relation p, = 9, R is used. Furthermore, the above equation can also be
written as

Im% prdr — hm /‘r-/ Eﬁ(rh_) +/Am2 (02 (rp) — ¢2) + E2c2 dr]
ri (v(rp) — e (rp)(r —rp Tie)
[ i Eb(rp) — /c*m2(0%(rp) — ¢2) + E2c2
/ dr].

+ lim [Im — ;
; (w(rp) — )k (rp)(r —rp £ie)

e—0

(36)

One can see from the last equation that there is no contribution to the imaginary
part coming from the first term. This is due to the Painleve coordinates which means
that the particle experiences barrier only from outside the horizon to inside (not from
the reverse way). Hence, the spatial contribution reads

TE
Imf prdr = —. 37
K

We shall now proceed to find the temporal contribution. To this end, we express the
EAWD spacetime in the following compact form (Painleve coordinates):

2

2_ (2 =2 2 ¢ 2
ds? = —(? = 2(r))a + T (38)
under the coordinate transformations
- v(r)
dt =dt — ———dr, 39
=2 %9)

where ¢ is the Painleve time. Using the action Eq. (17), we find

So = —EF WE Lk 40
0= — t+/62——52(r)r+ (r) (40)

By solving the integral, we can find the temporal contribution as

. E
Im(E A%y = Z—K (41)

Following the paper of Akhmedova et al [51,52], the total tunneling rate is obtained
as follows

I =exp [— <Im(EAt”“’) +Im(EA™) + Im fp,drﬂ

= exp (— 271E) . 42)

K
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Employing the Boltzmann formula 'y = ¢~%/7#  we find the foreknown Hawking
temperature:

K f'(rn)

Ty = 5~ = v

43
2 2 “3)

4 Quantum tunneling of scalar particles and the effect of GUP on
Hawking radiation

In this section, we shall focus on the Hawking temperature by using the tunneling of
the scalar particle from the EAWD spacetime. We start with the KGE

m2c?

1
— 3, (V=gg" 3, ®) — —— D =0, 44
—~ w (V—gg ) e (44)

on the background of the metric (38), which can be rewritten as

1
ds? = —Fdi* + 5c1r2, (45)

_ 2 50 . .
where F = ¢2 — 92(r) and G = Cc—”z(r) From those two equations, we obtain

1., ,. 1G 1, m?c?
_Fatd>+G8,<I>+§FF8,<D+§G8,CD—h—2<b:O. (46)
Then, we make use of the WKB ansatz:
® = exp <%S(r, :)) . (47)

In the limit of 7 goes to zero, we obtain the relativistic Hamilton—Jacobi equation:
%(8,5)2 — G35 —m*?*=0. (48)
We now suppose the solution of the action as the following
S(r,t) = —owt + W(r). (49)

The radial part W (r) is obtained from

woy =+ [ -8 VB2~ mrer (50)
VFG
The above integral is nothing but the
W(r) = / VER - miCF 51)
r r.
(c— v(r))(c +v(r)
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Note that there is a pole at the horizon F(r,) = 0. After using the near hori-
zon approximation and residue theorem, we solve the complex integral and find the
following solution:

W) = + TiE
2k (rp)

+ real contribution. (52)

The spatial contribution to the tunneling can be calculated as

Fspatial X exp <—Imf prd}’)
_ + -
al ([ o] )

nTE
= exp <_K(Vh)> ) (53)

The temporal part contribution is revealed after we consider the connection of the
interior region and the exterior region of the EAWD spacetime. Introducing t —
t —in/(2«), we will have Im (EAt°“") = Ex/(2«). Then the total temporal
contribution for a round trip gives

Tremporal O €Xp [— (Im(EAtf’”f) + Im(EM”)]

TE
= exp <_K(Vh)> . 54)

The total tunneling rate of the particles tunneling from outside to the inside reads

. 27 E
I = exp [ — (Im(EAt‘””) T Im(EAF™) + Im?{ p,dr)] — exp [— il } .

Kk (rp)

Hence the Hawking temperature is obtained as

K f'(rn)

T = — = s
" 2 v 2

(55)

in full agreement to previous result. Let us now consider the GUP effect on the scalar
particle tunneling the EAWD black hole using the modified commutation relations
and modification of the KGE with GUP [44-50], ® as follows:

— (200 = (200, + m2e| [1 = 2agup (120, + m3c?) ]| @, (56)

where agyp is the GUP parameter, and m, is the mass of the scalar particle. After
using WKB ansatz, we find the following equation in the leading order of 7 as follows:

I
@8 = G @8 +mc? (1= 2acup G@S) = 2agupmyc®) . (57)
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Then, we impose the Hamilton—Jacobi ansatz:

S, r)y=—Et+ W(r), (58)
and thus Eq. (57) reduces to
1
BT =G W) 4 mic? (1 —2agurG(W')? — 2aGUpmf,c2) . (59)

For the above equation, we obtain the outgoing and ingoing (=) radial solutions

! \/E2 —F (m%)c2> (l — Zm%czagyp)
tf
FG 11— 2m%c2aGUp

As the integral becomes zero at the horizon, we use the complex-integral path
method to find the solution near the horizon. Namely, we get

’
TGUP = L 1-— 2m2 CzolGUP = V0 f (rh) 1-— 2m26‘20lGUp. (61)
27V P 27V p

If we ignore the GUP effect, i.e., agyp = 0, the original Hawking temperature is
recovered. Let us note that a similar analysis can be applied to the GUP effects of
vector particles, yielding a similar conclusion. Moreover, in Ref. [144], it was shown
that the GUP Hawking temperature related to the vector particles is also affected by the
nature of particles (i.e. their mass and spin), such that the GUP Hawking temperature
would be slightly different from that related to scalar particles. The latter remark might
be important for Planck-scale physics. In our case, however, we work in the 1 + 1
EAWD metric; hence, the result will be quite similar. Therefore, in order to see the
difference, one needs to consider the problem of quantum tunneling from the 3 + 1
EAWD spacetime.

W)t =

dr. (60)

5 QNMs of particular EAWD spacetime

In this section, we explore the analytical forms of the QNMs of the (1+1)-dimensional
EAWD spacetime given as Eq. (38):

2
ds? = —NdP2 + %dr% (62)

where N = ¢ — v2(r). Without loss of generality, throughout this section, we use

geometric unit system (¢ = i = 1) and focus on a particular position-dependent
velocity: v(r) = ?(r) =e7 3 [a suitable smooth function satisfying the conditions
f©) = 1and f(r — oo) — 0], which represents a velocity that exponentially
decreases with r . We want to stress that all results in this section depend on this
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particular choice of v (7). Because, according to our observations, this is the probably
only the case for which one can perform a complete analytical computation of QNMs
in the EAWD spacetime. For a discussion of the velocity function of EAWD spacetime,
the reader is referred to [4] and references therein.

We first consider the massive KGE:

1
——8y (V=88 0vp) — 1?9 =0, (63)
n=id )

where  is the mass of the scalar field ¢. Choosing the following ansatz for the scalar
field .
¢ =e "R, (64)

where w is the frequency or energy of the flux of scalar particles at spatial infinity,
Eq. (63) is shown to be separable in the EAWD background (38). Then, one can reduce
the massive KGE to the following radial equation

2 _ MZ N

NOPR(r) + e 8, R(r) + (“’ -

) R(r) =0. (65)

After setting a new variable z = N = 1 — e™", Eq. (65) becomes

2,2
(1= PR @+ (-2 8,R () + ‘;(1—_’*;7% (2) =0. (66)

In sequel, if one uses the following s-homotopic transformation [79,87,89]
R(z) = (1 = P F (), (67)
where

o =—iw, (68)

B =ive?—pu?, (69)
the radial Equation (66) turns out to be a hypergeometric differential equation [90]:
2(1 = )2 F @) +[6— @+b + 1)z] 8,F(z) —abF(z) = 0. (70)

The coefficients @, b, and € are given by

2
at+p=io|\1-—-1], (71)
w

a=

b=a+p+l=io| [1-5-1|+1, (72)
w

T=142a=1-2io. (73)
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The three regular singular points of Eq. (70) are located at z = 0, z = 1, and
7z = oo. There are two independent solutions of Eq. (70) [90]:

F)=AIF@b:C )+ Az “Fl+a—C+1,1+b—c:2-Cz), (74)

where A1, A, are constants and F (a, 7;; C: z) stands for the Gaussian hypergeometric
function [90]. Thus, the analytical solution of Eq. (66) is given by

R(z) = Az (1 — )V F@, 5, 2)
F A1 — )V EA 4G L1+ h—:2—C 2).

Meanwhile, it is worth noting that setting @ = 0, which corresponds to ¢ = 1,
two solutions of Eq. (74) become linearly dependent. In this case, the general solution
represents a bound state Ref. [91].

In the vicinity of the event horizon (z — 0), the radial function R (z) behaves as

R(z) ~ Aje "% 4 Aze! "2, (75)
Namely, the near horizon form of the scalar field ¢ reads
@~ Alefiw(t+lnz) + Azefia)(lflnz)_ (76)

It is clear from Eq. (76) that the first term represents the ingoing wave while the
second term stands for the outgoing wave. For obtaining the QNMs, one should impose
the requirement that there exist only ingoing waves at the event horizon. Therefore, to
satisfy this condition, we set Ay = 0. Thus, the physically acceptable radial solution
for QNMs is given by

. iw l—é ~
R()=A1z"( -2 vV “F@,Db;¢2). (77)

For matching the near horizon and asymptotic regions, we are interested in the large
r behavior (z — 1) of the solution (77). To this end, we use the linear transformation
law z — 1 — z for the hypergeometric functions [90]:

io1-5 T(@T'(€ —a — b)
rC—ar@c—b)
~io[1-5 T@OL @+ b —0)
r@ro)
Flc—a,c—b:c—a—b+1;1—7). (78)

R(z) = A1z7°(1 — 2) F@ba+b—C+1:1—2)+

+ Az = 2)

Therefore, the asymptotic form (around z = 1) of the radial solution (77) is given
by
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10 Page 14 of 18 K. Jusufi et al.

io 1= T@T (@ —a — b)
rC—a)l@c—b)
i [1-5 T@L @ +b —0)

R(z)~Ai(1—-2)

+A1(1-2 —— 79
1( ) rGr®) (79)
Correspondingly, the near spatial infinity form of the scalar field becomes
—iw|:t—‘ / l—i‘)—; ln(l—z)] roOrc—a-— i;)
@~ Ate P
I'c—a)'(c—b)
—iw t+,/l—§ln(l—z)i| CEOCGE+D—2
+Are [ ©ra+s-o (80)

T @7r(b)

QNMs impose another requirement that the ingoing waves spontaneously must die
out at spatial infinity, which means that only outgoing waves are allowed to survive
at the infinity. To distinguish the outgoing and ingoing waves in Eq. (80), we impose

the following condition
2
J1-Eerso 1)
0]

Thus, A1 and A; become the amplitudes of ingoing and outgoing waves, respec-
tively. However, the boundary conditions of QNM impose that the first term of Eq.
(80) must be terminated. This can be performed by the poles of the gamma functions
[['(€ — @) or ['(€ — b)] seen in the denominator of the first term of Eq. (80). As is
well-known, the gamma functions I'(y) have the polesaty = —nforn =0, 1,2, .. ..
So, the massive scalar waves of the EAWD spacetime’s QNMs impose the following
restrictions:

c—d=-n, or C—b=-n, n=0,1,2,...) (82)

From above, we get two sets of QNMs:

. 2
i
Ot = —= (n = “—) : (83)
2 n
and ' 5
i ’
=——|1 — . 84
Wset2 2( +n 1+n> (84)

It is worth noting that for the set of Eq. 83, in order to avoid the divergence of the
frequency, one should exclude n = 0 case and consider n = 1, 2, 3, ... Similar results
were obtained in the QNMs of spin-% waves propagating in the geometry of Witten
black hole [143]. Having stable QNMs, one must have /mw < 0. Therefore, when
we analyze the obtained QNMs, it can be seen that the first set (83) admits the stable
modes when

uw<n (n>1), (85)
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and the second set (84) is stable if
u<n+1l (n=>0). (86)

On the other hand, one may question the existence of the unstable modes depending
on the value of ;. However, we want to draw the reader’s attention to Eq. (81), which
allows us to decide the type of wave: ingoing or outgoing. When the obtained sets
(83) and (84) [with stability requirements given by: Egs. (85) and (86)] are used in
Eq. (81), we thus have

2 2.2
1_“_2 :%>O, (forp < nandn > 1), (87)

w n®—u

W = Wset]
and

2 1 2 2
- =w>o, (forp <n+1landn>0). (88)

w (n+1)° — u?

W = Wset2

One can easily deduce from Eqgs. (87) and (88) that only stable QNMs can fulfill the
wave-identifier condition (81). Namely, QNMs that do not satisfy conditions Egs. (85)
and (86) for being stable will also not satisfy Eq. (81), which allows us to recognize
ingoing and outgoing waves at spatial infinity. In short, the analytical method that we
followed encompasses only the stable QNMs. On the other hand, our findings must
not be interpreted to mean that there are no unstable waves in the EAWD spacetime;
instead they must be studied (including the numerical methods) in more detail. As a
matter of fact, it is known that in some geometries there are unstable QNMs (see for
instance [92,95]). Moreover, in the limit of highly damped modes (i.e., n — 00) the
QNMs of the EAWD spacetime become mass independent. The latter remark is also
in good agreement with previous studies [85,93-95].

6 Conclusions

In this paper, we have studied the Hawking radiation of the EAWD spacetime in terms
of the quantum tunneling method. Our results obtained from the quantum tunneling
of massive vector and scalar particles are in accordance with the statistical Hawking
temperature, which is simply equal to 5—. We have also shown that the Hawking
temperature can be decreased when the GUP effects are taken into account. QNM
analysis of the particular EAWD spacetime (62) has shown that when this spacetime is
perturbed by the massive scalar particles, QNMs based on the wave-identifier condition
(81) satisfy the stability conditions (83) and (84). Namely, for the exact solution (75) of
the KGE we obtained, the unstable modes do not fulfill Eq. (81): therefore only stable
QNMs are taken into account. A similar result was obtained for the QNM frequencies

of the Dirac field propagating in the uncharged Witten black hole [143].
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In future work, we will extend our analysis to the problem of the greybody factor
in the EAWD spacetime. In this way, we plan to find analytical expressions for the
absorption cross-section, as well as for the decay-rate for the scalar field in the EAWD

spacetime.
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