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Abstract We focus on the HR of massive vector (spin-1) particles tunneling from
Schwarzschild BH expressed in the Kruskal–Szekeres and dynamic Lemaitre coor-
dinates. Using the Proca equation together with the Hamilton–Jacobi and the WKB
methods, we show that the tunneling rate, and its consequence Hawking temperature
are well recovered by the quantum tunneling of the massive vector particles.

Keywords Hawking radiation · Regular coordinates · Proca equation · Massive
vector particles · Quantum tunneling

1 Introduction

One prediction of the theory of general relativity (GR) devised by Einstein involves
BHs. In principle, a BH is classically defined by an area of space called the “event
horizon”, where everything is swallowed. Beyond the event horizon, matter and light
flow freely, but as soon as the horizon’s intangible boundary is crossed, matter and
light become trapped. So, a BH is an invisible object (i.e., black), at least classically.

Stephen Hawking’s prediction that a BH might not be completely black is unar-
guably one of the important consequences of the quantum mechanics, when integrated
with GR [1–3]. In particular, Hawking proved that a semiclassical BH possesses a
characteristic temperature of a thermally distributed radiation spectrum, which is the
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so-called Hawking radiation (HR) [1]. Today, in the literature there exists several
derivations of the HR, which are proposed to strengthen this staggering theory (see,
for example, [4–14]). Among those methods, the quantum tunneling method (QTM) of
Angheben [15] and Padmanabhan [7,16] (with their collaborators) has garnered much
attention (see [17] and references therein). QTM employes the complex path integral
analysis of Kerner and Mann [18,19] in the HJ formalism, which takes account of
the WKB approximation [20]. According to the QTM, a wave propagator that is pro-

portional to exp
(
i
h̄ S0 + S1 + O(h̄)

)
is applied to the wave equation of the tunneling

particle under question. Here, each S denotes the classical action of the trajectory of
the particles coming out/in from the horizon.

In particle physics, a vector boson is a boson with the spin-1. In particular, the mas-
sive vector bosons [21] i.e., W± and Z particles (force carriers of the weak interaction)
play a prominent role in the confirmed Higgs Boson [22]. Nowadays, the detection
of a massive photon, which is the so-called Darklight [23,24] has become very pop-
ular in the experimental physics since it is envisaged to explain the dark matter [25].
Furthermore, in theoretical physics, HR of the massive vector particles in stationary
BHs have also attracted much attention (see, for example, [26–38]). However, the
number of studies regarding the HR of the spin-1 particles from the non-stationary
regular metrics is very limited [39], and hence those regular spacetimes deserve more
research. Such an extension is one of the goals of the present paper. For this purpose,
we consider the PE [26,40,41] in the KS [42,43] and DL [44] coordinates. Next we
apply the QTM to the PEs, and obtain a set of differential equations for each coordi-
nate system. Those equations enable us to get a coefficient matrix. After setting the
determinant of the coefficient matrix to zero, we get the action S0, which is the lead-
ing order in h̄. Then, we show how one can compute the tunneling rate of the vector
particles in the non-stationary metrics, and recover the standard Hawking temperature
of the Schwarzschild BH.

The paper is organized as follows: In Sect. 2, we first give a brief introduction
about the Schwarzschild spacetime in KS coordinates. Then, a detailed calculation of
quantum tunneling of spin-1 particles near the KS horizon is provided. Section 3 is
devoted to the computation of the HR of the Schwarzschild BH from the tunneling
of the massive vector particles in the DL coordinates. The PE with minimum length
effect and conclusions are presented in Sect. 4.

2 Quantum tunneling of massive vector particles from Schwarzschild
BH in KS coordinates

The well-known Schwarzschild solution is in general described by the coordinates t
and r as follows

ds2 = gttdt
2 + grrdr

2 + gθθdθ2 + gϕϕdϕ2, (1)

where gtt = (1 − 2M/r), grr = −(1 − 2M/r)−1, gθθ = −r2, and gϕϕ = −r2 sin2 θ .
Herein, there is an event horizon at r = 2M , so that grr blows up. On the other side
when r < 2M , the gtt and grr exchange their signatures, however the signatures of
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gθθ and gϕϕ are not affected. Hence, r becomes “timelike” and t becomes “spacelike”
inside the event horizon. One could clear up this “coordinate singularity” problem by
introducing the KS coordinates [42,43]:

ds2 = A(−dτ 2 + dR2) + r2(dθ2 + B2dϕ2), (2)

where B = sin(θ) and the metric function A is given by

A = 32M3

r
e− r

2M . (3)

Metric (2) covers the entire spacetime manifold of the maximally extended
Schwarzschild solution, and it is well-behaved everywhere outside the physical singu-
larity (r = 0). The event horizon in the KS coordinates corresponds to τ = ± R, and
the curvature singularity is located at τ 2 − R2 = 1. Furthermore, in this coordinate
system the Killing vector becomes

ξμ =
[

R

4M
,

τ

4M
, 0, 0

]
. (4)

The particle energy of a test particle is given by (in terms of the action S) [45,46]

E = −ξμ∂μS = −
(

R

4M
∂τ + τ

4M
∂R

)
S. (5)

On the other hand, for a curved spacetime, the PE is governed by [26]

1√−g
∂μ(

√−g�νμ) + m2

h̄2 �ν = 0, (6)

where �ν = (�0,�1,�2,�3) and m represent the spinor fields [26,27,39] and mass
of the spin-1 particle, respectively, and

�νμ = ∂ν�μ − ∂μ�ν. (7)

Using metric (1) in Eq. (6), we obtain the following set of differential equations:

− (h̄ Ar B)−2 [m2r2AB2�0 + h̄2r2B2(−∂RR�0 + ∂τ R�1)

− h̄2B2A(∂θθ�0 − ∂θτ�2) + h̄2BA (∂θ B) (∂τ�2 − ∂θ�0)

− h̄2A(∂ϕϕ�0 − ∂ϕτ�3)] = 0, (8)

(h̄ Ar B)−2 [m2Ar2B2�1 − h̄2r2B2(∂τ R�0 − ∂ττ�1) − h̄2B2A(∂θθ�1 − ∂θR�2)

+ h̄2BA (∂θ B) (∂R�2 − ∂θ�1) − h̄2A(∂ϕϕ�1 − ∂ϕR�3)] = 0, (9)
(
h̄
√
Ar2B

)−2 [m2Ar2B2�2 − h̄2r2B2(∂θτ�0 − ∂ττ�2)

− h̄2r2B2(∂θR�1 − ∂RR�2) − h̄2A(∂ϕϕ�2 − ∂θϕ�3)] = 0, (10)
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(
h̄
√
Ar2B

3
2

)−2 [m2Ar2B�3 − h̄2r2B(∂ϕτ�0 − ∂ττ�3)

+ h̄2r2B(∂ϕR�1 − ∂RR�3) + h̄2AB(∂θϕ�2 − ∂θθ�3)

+ h̄2A (∂θ B) (∂θ�3 − ∂ϕ�2)] = 0. (11)

Applying the WKB approximation [39]:

�ν = cν exp

[
i

h̄
S0(τ, R, θ, ϕ) + S1(τ, R, θ, ϕ) + O(h̄)

]
, (12)

and taking the lowest order of h̄, Eqs. (8–11) become

(
−r2B2 (∂RS0)

2 − A
(
∂ϕS0

)2 − m2Ar2B2 − AB2 (∂θ S0)
2
)
c0

+ c3A
(
∂τϕS0

) + c1r
2B2 (∂Rτ S0) + c2AB

2 (∂τθ S0) = 0, (13)

r2B2 (∂Rτ S0) c0 + c1

(
−r2B2 (∂τ S0)

2 + A
(
∂ϕS0

)2 + m2Ar2B2 + AB2 (∂θ S0)
2
)

− c3A
(
∂RϕS0

) − c2AB
2 (∂Rθ S0) = 0, (14)

r2B4 [(∂τθ S0) c0 − c1 (∂Rθ S0)] + c2

{
AB2 (

∂ϕS0
)2

− B4r2
[
(∂τ S0)

2 − (∂RS0)
2 − m2A

]}
− AB2c3

(
∂ϕθ S0

) = 0, (15)

r2B
[(

∂τϕS0
)
c0 − c1

(
∂RϕS0

)] − c2AB
(
∂ϕθ S0

)

+ Br2
[
m2A − (∂τ S0)

2 + (∂RS0)
2 − A

r2 (∂θ S0)
2
]
c3 = 0. (16)

Now, one can obtain a matrix equation Z (c0, c1, c2, c3)
T = 0 [26,27] (the super-

script T means the transition to the transposed vector, and Z represents a 4×4 matrix)
with the following non-zero elements:

Z11 =
[
−r2B2 (∂RS0)

2 − A
(
∂ϕS0

)2 − m2Ar2B2 − AB2 (∂θ S0)
2
]
,

Z12 = Z21 = r2B2 (∂Rτ S0) ,

Z13 = AB2 (∂τθ S0) , Z31 = r2B4 (∂τθ S0) ,

Z14 = A
(
∂τϕS0

)
, Z41 = r2B

(
∂τϕS0

)
,

Z22 =
[
−r2B2 (∂τ S0)

2 + A
(
∂ϕS0

)2 + m2Ar2B2 + AB2 (∂θ S0)
2
]
,

Z23 = −AB2 (∂Rθ S0) , Z32 = −r2B4 (∂Rθ S0) ,

Z24 = −A
(
∂RϕS0

)
, Z42 = − r2B

(
∂RϕS0

)
,

Z33 = AB2 (
∂ϕS0

)2 − B4r2
[
(∂τ S0)

2 − (∂RS0)
2 − m2A

]
,
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Z34 = −AB2 (
∂ϕθ S0

)
, Z43 = −AB

(
∂ϕθ S0

)
,

Z44 = Br2
[
m2A − (∂τ S0)

2 + (∂RS0)
2 − A

r2 (∂θ S0)
2
]

. (17)

Let us consider the following HJ solution for the action:

S0 = Q(τ, R) + k (θ) + jϕ, (18)

where j denotes the angular momentum of the massive vector particle. Thus, the
determinant of Z-matrix yields

det Z = −m2r2AB3
{
A

[
B2 (∂θk)

2 + j2
]

+ r2B2
[
m2A − (∂τ Q)2 + (∂RQ)2

]}3
.

(19)

The nontrivial solution for ∂RQ is obtained by the condition of “det Z = 0” [26].
Hence, after substituting ∂τ Q = − 4ME

R − τ
R ∂RQ [recall Eq. (5)] into Eq. (19), we

obtain

∂RQ± =
4EMτr B ± R

√
16E2M2r2B2−A(R2 − τ 2)

{[
(∂θk)2+m2r2

]
B2+ j2

}

(R2 − τ 2)Br
.

(20)

where +(−) corresponds to the outgoing (incoming) massive vector particles. The
definite integration of Q is given by

Q =
∫

(∂RQ) dR + (∂τ Q) dτ. (21)

Using the identity ∂τ Q = − 4ME
R − τ

R ∂RQ, once again, Eq. (21) can be rewritten
as

Q = 1

2

∫
∂RQ

R
d(R2 − τ 2) − 4ME

R

∫
dτ. (22)

It is obvious that the second term is real in Eq. (22). However, after inserting
Eq. (20) into Eq. (22), we see that the imaginary contribution to the action comes only
from the first term since it has pole at the horizon. Thus, the complex path integration
method [15,16] for the pole located at the horizon (R = τ ) yields

ImQ−|hori zon = 0, (23)

ImQ+|hori zon = 4πME . (24)

Therefore, the probabilities of the ingoing/outgoing massive vector particles
become

123



 1 Page 6 of 10 I. Sakalli, A. Övgün


absorption = e− 2
h̄ ImQ−|hori zon = 1, (25)


emission = −e− 2
h̄ ImQ+|hori zon = e−8πME . (26)

It is worth noting that the above results are in full agreement with the semiclassical
QTM [17], which expects a 100 % chance for the ingoing particles to enter the BH, i.e.,

absorption = 1, and thereupon computes the probability of the outgoing (tunneling)
particles, 
emission .

The tunneling rate is then computed by


 = 
emission


absorption
= e−8πME . (27)

Now, recalling the Boltzmann factor (see for example [17]), 
 = e−βE = e−8πME ,
where β is the inverse temperature we can recover the original Hawking temperature
of Schwarzchild BH:

T ≡ TH = f ′(rh)
4π

= 1

8πM
. (28)

3 Quantum tunneling of massive vector particles from Schwarzchild BH
in DL coordinates

In 1933, Georges Lemaitre [44] found a coordinate system
(
τ̃ , R̃, θ, ϕ

)
that removes

the coordinate singularity at the Schwarzchild BH is given by

ds2 = −d τ̃ 2 + d R̃2

F
+ 4M2F2(dθ2 + B2dϕ2), (29)

where

F =
[

3

4M
(R̃ − τ̃ )

] 2
3

. (30)

The event horizon in the DL coordinates corresponds to F = 1 or R̃ = 4M
3 + τ̃ .

Furthermore, the Killing vector reads

ξμ = [1, 1, 0, 0] , (31)

and it leads to the following particle energy [46]:

E = −ξμ∂μS = − (
∂τ̃ + ∂R̃

)
S. (32)

In this coordinate system, PEs (6) with the ansätz (12) are given by

c0

(
− (

∂ϕS0
)2 − 4F3M2B2 (

∂R̃ S0
)2 − 4m2F2M2B2 − B2 (∂θ S0)

2
)

+ 4c1F
3M2B2 (

∂R̃τ̃
S0

) + c2B
2 (∂τ̃θ S0) + c3

(
∂τ̃ϕS0

) = 0, (33)
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4F2M2B2c0
(
∂R̃τ̃

S0
) + c1

(
4m2F2M2B2 − 4F2M2B2 (∂τ̃ S0)

2

+ B2 (∂θ S0)
2 + (

∂ϕS0
)2

)
− c2B

2 (
∂R̃θ

S0
) − c3

(
∂R̃ϕ

S0

)
= 0, (34)

4F2M2B2c0 (∂τ̃θ S0) − 4c1F
3M2B2c1

(
∂R̃θ

S0
) + c2

[
4m2F2M2B2 + (

∂ϕS0
)2

− 4F2M2B2 (∂τ̃ S0)
2 + 4F3M2B2 (∂RS0)

2
]

− c3
(
∂ϕθ S0

) = 0, (35)

4F2M2Bc0
(
∂τ̃ϕS0

) − 4F3M2Bc1

(
∂R̃ϕ

S0

)
− c2B

(
∂ϕθ S0

)

+
[
4m2F2M2B + B (∂θ S0)

2 − 4F2M2B (∂τ̃ S0)
2 + 4F3M2B

(
∂R̃ S0

)2
]
c3 = 0.

(36)

Now, one can read the non-zero elements of the coefficient matrix ℵ (c0, c1, c2, c3)
T

= 0 (ℵ is another 4 × 4 matrix) as follows

ℵ11 =
[
− (

∂ϕS0
)2 − 4F3M2B2 (

∂R̃ S0
)2 − 4m2F2M2B2 − B2 (∂θ S0)

2
]
,

ℵ12 = 4F3M2B2 (
∂R̃τ̃

S0
)
, ℵ21 = 4F2M2B2 (

∂R̃τ̃
S0

)
,

ℵ13 = B2 (∂τ̃θ S0) , ℵ31 = 4F2M2B2 (∂τ̃θ S0) ,

ℵ14 = (
∂τ̃ϕS0

)
, ℵ41 = 4F2M2B

(
∂τ̃ϕS0

)
,

ℵ22 =
[
4m2F2M2B2 − 4F2M2B2 (∂τ̃ S0)

2 + B2 (∂θ S0)
2 + (

∂ϕS0
)2

]
,

ℵ23 = −B2 (
∂R̃θ

S0
)
, ℵ32 = −4F3M2B2 (

∂R̃θ
S0

)
,

ℵ24 = −
(
∂R̃ϕ

S0

)
, ℵ42 = −4F3M2B

(
∂R̃ϕ

S0

)
,

ℵ33 = [4m2F2M2B2 + (
∂ϕS0

)2 − 4F2M2B2 (∂τ̃ S0)
2 + 4F3M2B2 (∂RS0)

2],
ℵ34 = − (

∂ϕθ S0
)
, ℵ43 = −B

(
∂ϕθ S0

)
,

ℵ44 =
[
4m2F2M2B + B (∂θ S0)

2 − 4F2M2B (∂τ̃ S0)
2 + 4F3M2B

(
∂R̃ S0

)2
]
.

(37)

Inserting the following ansätz for S0

S0 = Q̃(τ̃ , R̃) + k(θ) + jϕ, (38)

into Eq. (37), and subsequently using the energy condition (32), namely:

∂τ̃ Q̃ = −(E + ∂R̃ Q̃), (39)
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we get solutions for ∂R̃ Q̃ from detℵ = 0:

detℵ = −M2F2Bm2

1024

{
B2 (∂θk)

2 + j2 + 4M2F2B2
[
m2 + F

(
∂R̃ Q̃

)2

− (
E + ∂R̃ Q̃

)2
]}3 = 0, (40)

as follows

∂R̃ Q̃± =
EMBF ±

√
E2M2F3B2 − (F − 1)

[
m2F2M2B2 + 1

4 B
2 (∂θk)2 + j2

4

]

(F − 1) FBM
.

(41)
Using the energy expression (39) in the definite integration of Q̃:

Q̃ =
∫

∂
R̃
Q̃d R̃ + ∂τ̃ Q̃d τ̃ , (42)

we obtain

Q̃ =
∫

∂R̃ Q̃d
(
R̃ − τ̃

)
− E

∫
d τ̃ ,

= 2M
∫

∂R̃ Q̃√
F
dF − E

∫
d τ̃ , (43)

where dF = 1
2M

√
Fd(R̃ − τ̃ ) [see Eq. (30)]. It is clear that the second integral of

(43) results in real values, which means that it does not give any contribution to the
imaginary part of the action. However, after substituting Eq. (41) into Eq. (43), one can
see that the first integral of Eq. (43) has a pole at the horizon (F = 1), and evaluating
it around the pole yields

ImQ+|hori zon = 4πME, (44)

and trivially
ImQ−|hori zon = 0. (45)

The above results are fully consistent with Eqs. (23) and (24). Consequently, they
admit the same tunneling rate given in Eq. (27). In short, using the quantum tunneling
of the massive vector particles in the DL coordinate system, we have managed to
rederive the Hawking temperature (TH = 1

8πM ) of the Schwarzchild BH.

4 Conclusion

In this paper, we have used the PE (6) in order to compute the HR of the massive vector
particles tunneling from the Schwarzchild BH given in two different (KS and DL)
regular dynamic coordinate systems. In addition to the HJ and the WKB approximation
methods, particle energy definitions played crucial role in our computations. The

123



Quantum tunneling of massive spin-1 particles from non… Page 9 of 10  1 

original Hawking temperature of the Schwarzschild BH is impeccably obtained in the
both coordinate systems. Thus, we have shown that HR is independent of the selected
coordinate system. The latter remark was also highlighted in [47].

Finally, we plan to extend our present study to the HR of the massive spin-1 par-
ticles that experience the minimum length effect [48–51], which is governed by the
GUP (generalized uncertainty principle) [52–58]. Such a study requires the following
modification in the PE [59]:

1√−g
∂μ

[(
1 − l2p

3
∂2
μ

)
√−g�νμ

]
+ m2

h̄2 �ν = 0, (46)

where

�νμ = ∂ν�μ − ∂μ�ν − ∂ν

l2p
3

∂2
μ�μ + ∂μ

l2p
3

∂2
ν �ν, (47)

in which l p denotes the Planck length. This problem may reveal more information
compared to the present case. This is going to be our next study in the near future.
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