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Abstract: We study the quasinormal modes (QNMs) of a Schwarzschild black hole immersed in an electromagnetic

(EM) universe. The immersed Schwarzschild black hole (ISBH) originates from the metric of colliding EM waves

with double polarization [Class. Quantum Grav. 12, 3013 (1995)]. The perturbation equations of the scalar fields for

the ISBH geometry are written in the form of separable equations. We show that these equations can be transformed

to the confluent Heun’s equations, for which we are able to use known techniques to perform analytical quasinormal

(QNM) analysis of the solutions. Furthermore, we employ numerical methods (Mashhoon and 6th-order Wentzel-

Kramers-Brillouin (WKB)) to derive the QNMs. The results obtained are discussed and depicted with the appropriate

plots.
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1 Introduction

Classical black holes are closed systems that do not
emit any signal to an outside observer. The only way to
obtain information from a black hole is to study its rela-
tivistic wave dynamics with quantum mechanics, e.g.,
Hawking radiation, quasinormal modes (QNMs), and
gravitational waves. To have QNMs, a black hole must
be perturbed. A fair analogy to this concept is the ring-
ing of a bell, which is a damped harmonic oscillator. The
perturbation of a black hole has at least three stages: (i)
the transient stage, which depends on the initial pertur-
bation; (ii) the QNM ring-down, which is an important
stage that reveals unique frequencies containing informa-
tion about the source; and (iii) the exponential/power-
law tail, which occurs when the energy is very low at the
end of the perturbation. QNMs can be found by apply-
ing perturbations to the black hole spacetime with ap-
propriate boundary conditions: the wave solution should
be purely outgoing at infinity and purely ingoing at the
event horizon [1–4, 19]. For reviews and research papers
on QNMs, the reader may refer to Refs. [5–12]. The de-
tection of gravitational waves [13–15] has brought QNMs
into the spotlight again. However, the QNMs (having
frequencies above 500 Hz [16]) of lower mass black holes

and neutron star mergers are presently not detectable.
The main problem is the increasing quantum shot noise
[17] in the high frequency regime. However, recent de-
velopments [18] are very promising for the detection of
QNMs in the near future.

Our main aim in this study is to study the QNMs of
massive/massless scalar fields in immersed Schwarzschild
black hole (ISBH) spacetime. To this end, we shall use
particular analytical and numerical methods. Iyer and
Will [20] were the first researchers to obtain QNMs with
the help of the third order WKB approximation. Later
on, their study was extended to the sixth order by Kono-
plya and Zhidenko [21–23]. The WKB approximations
have also been considered by other researchers to com-
pute the QNMs of various spacetimes [24–51].

The ISBH solution is given by [52–54]:

ds2=−F (r)dt2+
1

F (r)
dr2+r2(dθ2+sin(θ)2dϕ2), (1)

where

F (r)=1−2M

r
+
M 2(1−a2)

r2
, (2)

in which M denotes the mass-parameter and a is the in-
terpolation parameter [54, 55]: 1 ≥ a ≥ 0. Letting the
effective charge be Qeff ≡ M 2(1−a2), it is clear that
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when a= 1 i.e., Qeff = 0, metric (1) is nothing but the
Schwarzschild black hole. However, the case of a = 0
(Qeff=M 2) corresponds to the Reissner-Nordström black
hole [56, 57]. The metric function F (r) can be rewritten
as

F (r)=
(r−rp)(r−rn)

r2
, (3)

where rp=M(1+a) and rn=M(1−a) are the event and
inner horizons, respectively. To illustrate the effect of
the a-parameter on the EM structure of the spacetime,
one can use the Newman-Penrose formalism [58]. To this
end, the null tetrad frame (l,n,m,m), which satisfies the
orthogonality conditions (l.n=−m.m=1) is chosen to be

lµ=dt− dr

F (r)
,

2nµ=F (r)dt+dr,

√
2mµ=−r(dθ+isinθdφ),

√
2mµ=−r(dθ−isinθdφ). (4)

Thus, the non-zero Weyl and Ricci scalars can be
computed as follows:

Ψ2=− (rp+rn)r−2rprn
2r4

=− 1

r4
[Mr+Qeff)], (5)

Φ11=
rprn

2r4
=
Qeff

2r4
. (6)

Since the only non-zero Weyl scalar is Eq. (5), the
metric (1) represents a Petrov type-D [xx] spacetime.
The effect of the a-parameter on the gravitational and
EM fields is now clearer:

Gravity→(a=1)→Ψ2=
−M

r3
, Φ11=0.

Gravity+EM→(0≤a<1)→Ψ2 6=0 6=Φ11.

The Hawking temperature [59] is expressed in terms
of the surface gravity (κ) as TH = κ

2π
. For the ISBH ge-

ometry, it is given by

TH=
κ

2π
=

F ′(r)

4π

∣∣∣∣
r=rp

=
a

2Mπ(a+1)2
. (7)

This paper is organized as follows. In Section 2, we
provide a complete analytical solution to the massive
Klein-Gordon equation (KGE) in terms of the confluent
Heun functions. We then show how the QNMs can be
computed from that obtained exact solution. Sections 3
and 4 are devoted to numerical studies of the massless
KGE in the ISBH geometry. We obtain the correspond-
ing effective potential and analyze it. We present two
numerical methods (the Mashhoon and the sixth-order
WKB) for computing the QNMs of the ISBH. Finally,
we summarize our discussions in the conclusion.

2 Analytical QNMs

Let us consider a massive scalar field that obeys the
KGE on the ISBH metric (1). Recall that a massive KGE
is given by (e.g., Ref. [60])

1√−g
∂α

(√
−ggαβ∂βΨ0

)
−µ2

0Ψ0=0. (8)

Here, µ0 and Ψ0 represent the mass and the scalar field,
respectively. It is straightforward to see that Eq. (8) is
separable with the following ansatz:

Ψ0=Ψ0(r,t)=R(r)A(θ)eimϕe−iωt, (9)

where ω denotes the frequency of the wave andm denotes
the magnetic quantum number associated with the rota-
tion in the ϕ direction. By defining an eigenvalue (λ),
one can show that Eq. (8) leads to the following angular
and radial equations:

sin(θ)
d2

dθ2
A(θ)+

(
d

dθ
A(θ)

)
cos(θ)

+

(
λsin(θ)− m2

sin(θ)

)
A(θ)=0, (10)

and
(

d

dr
∆(r)

)
d

dr
R(r)+∆(r)

d2

dr2
R(r)

+

(
r4ω2

∆(r)
−λ−µ2

0r
2

)
R(r)=0. (11)

The solution of the angular equation (10) is given in
terms of the four-dimensional spheroidal functions [61].
To obtain the exact solution of the radial equation (11),
we first introduce a new variable:

z=(r−rp)k
−1
m , (12)

where km=rp−rn. By using Eq. (12) in Eq. (11), one can
transform the radial equation into the following form:

z(1−z)
d2

dz2
R(z)+(1−2z)

d

dz
R(z)

+

(
λ+µ2

0(rp−kmz)
2− (rp−kmz)

4
ω2

z(z−1)k2
m

)
R(z)=0. (13)

Furthermore, applying a particular s-homotopic
transformation [62] to R(z):

R(z)=eB1zzB2(1−z)B3U(z), (14)

where the coefficients B1, B2, and B3 are given by

B1=km

√
µ2

0−ω2, (15)

B2=
ir2pω

km

, (16)

B3=
ir2nω

km

, (17)

105102-2



Chinese Physics C Vol. 42, No. 10 (2018) 105102

we obtain a differential equation for U(z), which is
identical to the confluent Heun differential equation [63–
70] (for one of the most detailed works about the appli-
cations of the Heun differential equation, the reader is
referred to Ref. [71]):

d2

dz2
U(z)+

(
ã+

1+b̃

z
− 1+c̃

1−z

)
d

dz
U(z)+

(
f̃

z
− g̃

1−z

)
U(z)=0.

(18)
The three parameters seen in the coefficient bracket

of d

dz
U(z) are given by

ã=2B1, b̃=2B2, c̃=2B3. (19)

Setting
d̃=−kmkp(µ

2
0−2ω2), (20)

ẽ=
−r2p

[
(µ0km)2−2rpω

2(km−rn)
]
−k

2
mλ

k2
m

, (21)

where kp=rp+rn, one can also find the other two param-
eters of Eq. (18) as follows:

f̃=
1

2
(ã−b̃−c̃+ãb̃−b̃c̃)−ẽ, (22)

g̃=
1

2
(ã+b̃+c̃+ãc̃+b̃c̃)+d̃+ẽ. (23)

The general solution of the confluent Heun differen-
tial equation (18) is given by Ref. [72] as follows:

U(z)=c1HeunC(ã,b̃,c̃,d̃,ẽ;z)+c2z
−b̃HeunC(ã,−b̃,c̃,d̃,ẽ;z),

(24)
where c1 and c2 are integration constants. Thus, the
general solution of Eq. (13) in the exterior region of the
event horizon (06z<∞) reads

R(z)=eB1z(1−z)B3

[
C1z

B2HeunC(ã,b̃,c̃,d̃,ẽ;z)

+C2z
−B2HeunC(ã,−b̃,c̃,d̃,ẽ;z)

]
. (25)

Now, we follow one of the recent techniques [66, 70,
73] to compute the QNMs of scalar waves propagating
in the geometry of an ISBH. QNMs are the solutions
associated with complex frequencies. In particular, the
imaginary component of the frequency states how fast
the oscillation will fade over time [75].

The QNMs can be obtained from the radial solution
(25) under certain boundary conditions: the Heun func-
tions should be well-behaved at spatial infinity and finite
on the horizon. This requires R(z) to take the form of

Heun’s polynomials [76], which is possible with the δ̃n
condition [70, 73, 74]

d̃

ã
+
b̃+c̃

2
+1=−n, with n=0,1,2,... (26)

In Ref. [66], it is shown that the Heun’s polynomials
arising from Eq. (26) yield the most general class of solu-
tions to the Teukolsky master equation pertinent to the

Teukolsky-Starobinsky identities [77], which are closely
related to the subject of QNMs [78, 79]. Using Eq. (26),
we find out that, assuming ω≥µ0,

i

[
−kp(2ω

2−µ2
0)

2
√
ω2−µ2

0

+
ω
(
r2p+r2n

)

km

]
+1=−n. (27)

With the aid of a mathematical computer package
like Maple 18 [72], one can obtain a solution for ω from
Eq. (27). However, the solution is excessively lengthy,
which prevents us from typing it here. On the other
hand, if one considers the very light spin-0 particles with
µ0∼0, the δ̃n condition (26) results in

2iωr2p
km

+1=−n. (28)

The above equation allows the following solution for
the QNMs:

ωn=i
km

2r2p
(n+1). (29)

Recalling the definition of surface gravity (κ) from
Eq. (7), we have

κ=
km

2r2p
. (30)

This changes Eq. (29) to the following form:

ωn=iκ(n+1)=i2πTH (n+1). (31)

It is obvious from Eq. (31) that an ISBH admits
purely imaginary QNMs, which is in good agreement
with the QNM result for a Schwarzschild black hole
with a global monopole [74]. Furthermore, although it
is valid for n → ∞, the QNM result of Hod [80] (see
also Ref. [81]), which was obtained analytically by the
continued-fraction argument method [82], also supports
our result (31).

3 QNMs by the Mashhoon method: Ap-

proximation with Poschl-Teller poten-

tial

As we have learned from the previous section, the
mass does not play an important role in the QNMs. We
therefore consider the following massless KGE to perform
numerical analysis in this section:

∇2Φ=0. (32)

We take the ansatz of the scalar field, which can be
decomposed into its partial modes in terms of the spher-
ical harmonics Yl,m(θ,ϕ),

Φ(r,θ,φ,t)=
R(r)

r
Ylm(θ,φ)e−iωt. (33)

Here, ω, l, and m are the oscillating frequency of the
scalar field, the angular quantum number, and the mag-
netic quantum number, respectively. Then, we separate
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the massless KGE to obtain the following radial differ-
ential equation:

R′′+(ω2−V0 (r))R=0, (34)

where the effective potential is given by

V0 (r)=F (r)

[
(l(l+1 )

r 2
+
F ′

r

]
. (35)

Note that a prime stands for the derivative with respect
to the tortoise coordinates (r∗), dr∗ = dr

F (r)
. First, we

investigate the features of the potential by plotting it
with different values of parameters such as M and a. In
Fig. 1, the potential is plotted for various values of a. It
is obvious that when a increases, the height decreases.

Fig. 1. (color online) V vs. r for massless particles.

Now, we use the Mashhoon method to calculate the
QNMs numerically [83–85]. Wave functions vanish at
the boundaries and the QNM problem becomes a bound-
states problem with a potential of V0→−V0 . Moreover,

analytic solutions of the wave equation for this kind of
potential resemble the Poschl-Teller (PT) potential

VPT=
V0max

cosh2α(r∗−r)
. (36)

Here, V0max
is the effective potential (35) at the max-

imum point, which gives the height. The bound states
of the PT potential are portrayed as follows:

ω(α)=W (α′), (37)

W=α′

[
−(n+

1

2
)+

1

4
+

√
V0max

α′2

]
. (38)

The QNMs (ω) are calculated using the inverse of
the PT potential bound states (α′=iα). Thus, we have
[83, 84]

ω=±
√
V0max

−1

4
α2−iα

(
n+

1

2

)
, (39)

where n is the overtone number, and ω is calcu-
lated for varying values of n: (−1.5,i0.3230265022),
(−3.0,i0.9243084555), (−7.5,i2.470697496), and (−15.0,
i4.985413335). It is clear that the field decays faster for
large values of a. From the above solution it is seen that
the perturbations are stable (ℑω<0) as well as that the
damping increases with the overtone number n.

4 Numerical results with the sixth-order

WKB method

In this section, by employing Konoplya’s sixth order
WKB approach [21], we compute the QNM frequencies
and obtain the QNMs from the following identity:

ω2−V0√
−2V ′′

0

−L2−L3−L4−L5−L6=

(
n+

1

2

)
. (40)

Here, V ′′

0max
is the second derivative of the maximum

effective potential. Details of the expressions for Li can
be found in Ref. [21], and n is the overtone number. The
last value is the maximum point of the potential.

Table 1. a=0.1.

l ω1 ω2 ω3 ω4 ω5 ω6

1 0.376627-i0.089963 0.376291-i0.0900433 0.376188-i0.0896098 0.374267-i0.0900696 0.376185-i0.0977338 0.4041-i0.0909823

2 0.623756-i0.08954 0.623774-i0.0895374 0.623761-i0.0894481 0.623273-i0.0895182 0.623696-i0.0924193 0.640826-i0.0899488

3 0.872001-i0.0893856 0.872008-i0.0893849 0.872006-i0.089359 0.871821-i0.089378 0.871975-i0.0908726 0.884262-i0.0896099

4 1.12049-i0.0893221 1.12049-i0.089322 1.12049-i0.0893121 1.1204-i0.0893192 1.12047-i0.0902263 1.13004-i0.0894622

Table 2. a=0.5.

l ω1 ω2 ω3 ω4 ω5 ω6

1 0.345998-i0.0981664 0.34612-i0.0981318 0.346002-i0.0977128 0.344377 - i0.0981738 0.346651-i0.105874 0.377539-i0.0972126

2 0.570878-i0.0975128 0.5709-i0.097509 0.570887-i0.0974313 0.570478-i0.097501 0.570995-i0.100477 0.590496-i0.0971589

3 0.797048-i0.0973316 0.797053-i0.097331 0.79705-i0.0973092 0.796896-i0.097328 0.797086-i0.0988706 0.811203-i0.0971499

4 1.02363-i0.0972581 1.02363-i0.0972579 1.02363-i0.0972497 1.02355-i0.0972567 1.02364-i0.0981953 1.03468-i0.0971477
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Table 3. a=0.9.
l ω1 ω2 ω3 ω4 ω5 ω6

1 0.303024-i0.0986391 0.303153-i0.0985971 0.303055-i0.0982969 0.301332-i0.0988591 0.338945-i0.0971429 0.338945-i0.0971429

2 0.500192-i0.097696 0.500207-i0.097693 0.500198-i0.0976455 0.499781-i0.097727 0.500499-i0.101335 0.522507-i0.097067

3 0.698423-i0.0974405 0.698426-i0.0974402 0.698424-i0.097428 0.698269-i0.0974496 0.698533-i0.0993224 0.714528-i0.0970991

4 0.897001-i0.097336 0.897002-i0.0973359 0.897001-i0.0973315 0.896928-i0.0973395 0.897052-i0.0984799 0.909582-i0.0971233
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Fig. 2. The real and imaginary part of QNMs with sixth-, fifth-, fourth-, third-, and second-order WKB formula
and the eikonal approximation for a=0.1, M=1 and s=0 mode with the multipole numbers l=(1,2,3,4).
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Fig. 3. The real and imaginary part of QNMs with sixth-, fifth-, fourth-, third-, and second-order WKB formula
and the eikonal approximation for a=0.5, M=1 and s=0 mode with the multipole numbers l=(1,2,3,4).
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Fig. 4. The real and imaginary part of QNMs with sixth-, fifth-, fourth-, third-, and second-order WKB formula
and the eikonal approximation for a=0.9, M=1 and s=0 mode with the multipole numbers l=(1,2,3,4).
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Fig. 5. (color online) The real and imaginary part of QNMs with sixth-order WKB formula for a versus Re(ω) and
a versus Im(ω) for M=1, s=0 mode with the multipole number l=4.

The QNM frequencies are given by ω=ωR−iωI. A
positive imaginary value of iωI means that it is damped
and negative iωI means that there is an instability.

The result of Eq. (40) gives the list of QNMs found
with sixth-, fifth-, fourth-, third-, and second-order
WKB expressions and the eikonal approximations with
different values of multipole number l = 1,2,3,4 and
a=0.1,0.5,0.9.

The convergence of the WKB formula for varying val-
ues of a and the expedited field decay can be seen in
Tables 1, 2, 3 and is plotted in Figs. 2, 3, 4 for values of
a=(0.1,0.5,0.9),M=1 and s=0 mode with the multipole
numbers l=(1,2,3,4).

5 Conclusion

In this paper, we have analytically studied massive
scalar field perturbations by using the KGE in an ISBH
geometry. After finding the exact solution of the radial
wave equation, we have found close agreement with the
obtained QNMs of the ISBH and previous studies [80–
82], which were on QNMs of Schwarzschild black holes.

We then employed the sixth-order WKB approxima-
tion method to compute the QNMs. Special attention
has been paid to the details of how QNMs vary with the
interpolation parameter a. The plots of the QNM fre-
quencies ω versus a show that the real part of the QNM
frequency Reω decreases with a, similarly to the imag-
inary part of the QNM frequency Imω decreasing with
it as shown in Fig. 5. We have also inferred from the
associated graphs that if one plots the QNM frequencies
from the lower to the higher overtones, taking into ac-

count different WKB orders, the comparative accuracy
gets better when l<n. Namely, similar to the study of
QNMs of test fields around regular black holes [86], the
results Tables 1, 2, 3 and Figs. 2, 3, 4, 5 have shown
that an increase of Qeff (i.e, a→0) implies a monotonic
increase of Reω and Imω (and vice versa): the damp-
ing rate of the wave decreases with increasing Qeff . One
can infer from the latter results that ISBH oscillators are
“better” (more slowly damped) than the Schwarzschild
BH. On the other hand, our results are contrary to the
QNM results obtained for black holes in the braneworld,
for which the real oscillations decrease while the damp-
ing rate increases with increasing tidal charge parameter
[87].

We plan to extend our study to a rotating ISBH [54]
in the near future. Moreover, in addition to the scalar
perturbations, we aim to study the Dirac and Proca
perturbations and quantum tunneling processes of the
ISBH. The QNM frequencies of the ISBH in the eikonal
limit (l>>1) by using the parameters of null geodesics
[88–90] are also in our work agenda.
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