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In this paper, we show how the quasinormal modes (QNMs) arise from the perturbations
of massive scalar fields propagating in the curved background by using the artificial
neural networks. To this end, we architect a special algorithm for the feedforward neural
network method (FNNM) to compute the QNMs complying with the certain types of
boundary conditions. To test the reliability of the method, we consider two black hole
spacetimes whose QNMs are well known: 4D pure de Sitter (dS) and five-dimensional
Schwarzschild anti-de Sitter (AdS) black holes. Using the FNNM, the QNMs of are
computed numerically. It is shown that the obtained QNMs via the FNNM are in good
agreement with their former QNM results resulting from the other methods. Therefore,
our method of finding the QNMs can be used for other curved spacetimes that obey the
same boundary conditions.

Keywords: Quasinormal modes; feedforward neural network; de Sitter; anti-de Sitter;
black hole.
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1. Introduction

QNMs are single frequency modes dominating the time evolution of perturbations
of systems which are subject to damping, either by internal dissipation or by radi-
ating away energy. Due to the damping, the frequency of a QNM must be complex,
its imaginary part being inversely proportional to the typical damping time. Recall
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that, in general relativity, damping occurs even without friction, since energy may
be radiated away towards infinity by gravitational waves [1,2]. Thus, they could lead
to the direct identification of the existence of the BH through gravitational wave
observation, which might be realized in the near future. QNMs, which are believed to
be characteristic sounds of perturbed black hole (BH) spacetimes, have been inves-
tigated for a long time and their physical properties have been presented in various
studies (see for example [3–28]). It is worth noting that similar to the BH geome-
tries, QNMs can also arise from other spacetimes including the wormholes [33–66].

Since the discovery of the AdS/CFT correspondence [68], QNMs of AdS space-
times have become very attractive over the past two decades. Besides, it is sug-
gested that QNMs of AdS BHs are related with the double conformal field theory
(CFT) [69–74]. Since the QNMs govern the deterioration time of a perturbed BH,
within the bulk, configuration, they should be associated with the AdS/CFT duality
in order to return the boundary of Yang–Mills theory to the thermal equilibrium.
The numerical computations of QNMs for AdS BHs in arbitrary dimensions were
served in [69]. Then, Govindarajan and Suneeta [75] computed the QNMs of the
5D AdS-Schwarzschild BH by using the superpotential approach. Moreover, in the
framework of scalar perturbation spectra, it was known that there exists a relation
between (bulk) dS spacetime and the corresponding CFT at the boundaries (past
I− and future I+) [76], which provides a quantitative support for the dS/CFT
correspondence. The relation between the QNMs and surface gravity (κ) of the
cosmological horizon was thoroughly discussed in [77]. Unlike the massless mini-
mally coupled scalar field, it was shown that for a massive scalar field there exists
QNMs in the pure dS spacetimes. Even the obtained QNMs of pure dS spaces are
analytical frequencies [78].

New derivations of the QNMs for the curved spacetimes have always attracted
a great attention. This challenge stems from the fact that it is difficult to solve
the wave equations of the considered fields, analytically. Therefore, many numer-
ical techniques have been developed in order to solve those type of equations. In
recent decades, the artificial neural networks (ANNs) [81] have been employed for
finding solutions of differential equations which appeared in the different physical
systems. As is well known, FNNM was the first and simplest type of ANN devised.
In this network, the information moves in only one direction forward from the input
nodes, through the hidden nodes (if any) and to the output nodes. There are no
cycles or loops in the network [82]. FNNM or such connectionist systems compute
the systems uncertainly inspired by the biological nervous (neural) systems that
constitute animal brains and also there are many applications in general relativ-
ity and cosmology [83–94]. Some of the advantages of using FNNM in solving the
differential equations are listed as follows [95–98]:

• Solution in the domain/field of integration is continuous [99],
• Computing complexity does not increase significantly with increasing number of

sampling points and dimensions,
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• Rounding-off error propagation does not alter the ANN solution, which happens
in standard numerical methods

In this paper, we separately compute the QNMs for the four-dimensional pure dS
space [78,100] and the 5D AdS-Schwarzschild BH [101] by using the FNNM within
the framework of supervised learning (see for instance [102] and references therein).
In fact, the supervised learning algorithm analyzes some training (educational)
data and generates an inference (or the so-called trial) function that can be used to
achieve new results. This requires that the learning algorithm should be reasonably
generalized from the educational data to situations that are not visible. It was also
shown in [103] that the accuracy of the results obtained from the neural network
surpasses the accuracy of other machine learning algorithms like SVM (support
vector machines) and RF (random forest). While performing the computations, we
consider the massive scalar field perturbations of the associated spacetimes. Finally,
we compare the QNM values obtained with the FNNM with the results found from
the other methods.

This paper is organized as follows. In Sec. 2, we briefly review the QNMs of the
4D pure dS and the 5D AdS-Schwarzschild BH. In Sec. 3, we describe the FNNM
and show how one can compute the QNMs of those dS/AdS spacetimes. Then, we
present and compare our results with the known ones. Finally, we conclude the
paper with discussions in Sec. 4. We use natural units with G = � = c = 1.

2. QNMs of Pure dS and AdS-Schwarzschild BHs

In this section, we shall make a brief overview of the QNMs of the pure dS and AdS
spacetimes, which were obtained by the methods of analytical and super potential
approach, respectively. We first consider the pure dS spacetime, which is given by
the following 4D line-element [100]:

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2, (1)

where f(r) = 1 − ( r
l )

2 in which l denotes the minimal radius of dS space. Further-
more, r2dΩ2

2 is the metric on the 2D sphere of radius r. For the massive scalar field
Φ perturbations, one should consider the Klein–Gordon equation:

Φ;ν
;ν = m2Φ, (2)

which can be separated by

Φ =
ΨdS(r)

r
e−iωtY�(Ω2). (3)

Here, Y�(Ω2) is nothing but the spherical harmonics, which corresponds to the eigen-
function of two-dimensional Laplace–Beltrami operator ∇2

2 having the eigenvalue
−�(� + 1). Recalling definition of the tortoise coordinate, we get

r∗ =
∫

dr

f(r)
= l tanh−1

(r

l

)
. (4)
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Thus, one obtains the radial equation in the form of 1D Schrödinger-like wave
equation

− d2ΨdS

dr∗2 +
[
V dS

0 (r) − ω2
]
ΨdS = 0, (5)

where the effective potential reads

V dS
0 (r) =

1
l2

[
�(� + 1)

sinh2(r∗/l)
− 2 − m2l2

cosh2(r∗/l)

]
, (6)

Since �(� + 1) ≥ 0, the effective potential (6) diverges (→ ∞) at the singularity
(r = 0) and vanishes at the cosmological horizon (rh). For this reason, QNMs
obey the following boundary conditions: purely outgoing wave at the cosmological
horizon and vanish at the singularity [78]. Meanwhile, at this stage, it is worth
noting the late-time tails [79] cannot be addressed by merely studying Eq. (5) (the
reader can refer to [80]). After deriving the exact analytical solution of the radial
equation in terms of the hypergeometric function and in the sequel imposing the
boundary conditions, it was found that to have non-zero QNMs there is a lowest
bound: m > 3

2l on the mass of scalar field Φ. The resulting QNM sets were given
by [78] as follows:

ωI = ±1
l

[
m2l2 − 9

4

] 1
2

− i

l

(
2n + � +

3
2

)
(7)

or ωII = ±1
l

[
m2l2 − 9

4

] 1
2

− i

l

(
2n− � +

1
2

)
. (8)

The difference in sets is due to the poles of the gamma functions that help
us to sort out the waves on the horizon only as outgoing waves. Without loss of
generality, when comparing the above results with the FNN method to be applied,
we will consider the first set as

ω =
1
l

(
m2l2 − 9

4

) 1
2

− i

l

(
2n + � +

3
2

)
. (9)

On the other hand, 5D AdS-Schwarzschild BH is given by [101]

ds2 = −N(r)dt2 + N−1(r)dr2 + r2dΩ2
3, (10)

where

N(r) = 1 +
(r

l

)2

−
(r0

r

)2

. (11)

The relationship between r0 and the BH mass M is given by

M =
3A3r

2
0

16πG5
, (12)

where A3 denotes the area of a unit 3D-sphere described by dΩ2
3. Using the ansatz

for the scalar field

Φ = r−3/2ΨAdS (r) exp(iωt), (13)
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the massless Klein–Gordon equation of metric (10) yields the following one-
dimensional Schrödinger-like wave equation:

− d2ΨAdS

dr∗2 +
[
V AdS

0 (r) − ω2
]
ΨAdS = 0, (14)

where dr∗ = dr
N(r) and the effective potential becomes (for simplicity, the authors

of [101] had taken l = 1 and we will also stick to their choice in our computations
in order to make a consistent comparison):

V AdS
0 (r) = N(r)

(
15
4

+
3

4r2
+

9r2
0

4r4

)
. (15)

It is clear from Eq. (15) that V AdS
0 → ∞ at spatial infinity (r = ∞) and vanishes

at the horizon
[
r = r+ → N(r+) = 0

]
. For this reason, QNMs of obey the following

boundary condition: purely ingoing wave at the horizon and vanish at the spatial
infinity. Since the fundamental QNMs of the Schwarzschild BH are closely approxi-
mated by the QNMs of the Pöschl–Teller potential, in the spirit of the Pöschl–Teller
method for asymptotically flat BHs, the QNMs for the AdS-Schwarzschild BH in
5D, using a superpotential approach, were obtained and served in [101, Table I].
In general, for the asymptotically flat BHs, the QNMs correspond to solutions of
the wave equations with the physical boundary conditions of purely outgoing waves
at spatial infinity and purely ingoing waves crossing the event horizon [104, 105].
However, for the AdS-Schwarzschild BH, QNMs should admit wave functions that
must be purely ingoing wave at the horizon and no outgoing wave at spatial infin-
ity. Namely, at the asymptotic regions, all QNMs of the AdS BH are required to
terminate. Thus, as being highlighted in [101], any numerical calculation of QNMs
is very artful due to the nature of the boundary conditions. During the numerical
computations, one must ensure to have pure ingoing wave near the horizon, which
could be contaminated by an outgoing wave and the correct asymptotic behavior of
the wave function that fades away as r → ∞. In the superpotential method [101], as
in the continued fraction method [106] which is suitable for the asymptotically flat
BHs, a particular ansatz for the wave function was introduced to meet all boundary
conditions. Similarly, in the FNNM method, a trial solution or ansatz that meets
the boundary requirements will have to be sought.

3. FNNM

A complicated problem in science can be solved analytically or numerically in terms
of known methods. In most of the cases, an analytical solution to the associated
differential equation may not be obtained easily and it is usually cumbersome.
Various types of numerical methods have been developed to solve such transcen-
dental differential equations such as shooting, Euler, Runge–Kutta, finite difference,
finite element, finite volume, Adomian decomposition, asymptotic iteration, varia-
tional iteration, and perturbation methods. All these methods have both advantages
and shortcomings. Although they provide good approximate solutions, these meth-
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ods require discretization of the domain of the problem. Most of these numerical
methods give solutions over discrete points and the solution between these points
needs to be interpolated. Besides, these methods are in general iterative such that
one should fix the step-size before solving the considered problem. The advan-
tages of employing the ANNs (and whence the FNNM) can be listed as follows
[95, 96]:

• Solving differential equation by neural network framework presents solution with
a very good generalization properties.

• The method is general and can be applied to the systems defined on either orthog-
onal box boundaries or on irregular arbitrary shaped boundaries.

• The ANN method can be implemented on parallel architectures which can be
used in more complex problems.

• The ANN method spends negligible computing time and memory.
• If the model has free parameters, they can be treated as variables in the ANN

method.

Most of the problems which cannot be solved analytically are turned into an
mathematical optimization problem in which a numerical solution is sought. This
optimization can be done in some techniques. Since the problem is considered in
a specific region (i.e. the convergence problem), the transition between local and
global solutions require intensive processing. In this perspective, the ANNs have
broad usage field and they are powerful tools for performing a mathematical mod-
eling.

An ANN can be defined as parallel information processor in which a number
of neurons are distributed as operating units. This information processing system
can take many input from outside, combines them via mostly nonlinear operations
and produce the output. Nowadays, ANN is one of the popular topics of machine
learning paradigm. They have a wide range of usage from pattern recognition to
financial forecast including classification, decoding speech, etc. ANNs are typically
composed of layers. These layers are made of interconnected neurons (perceptrons in
modern computers). A neuron is the main processing element in the ANN. Because,
neurons have activation functions which translate input signals to output signals.
Problem solving process in the ANN occurs by acquiring knowledge. This mech-
anism is maintained by learning methods and information is stored within ’inter-
neuron connections’ strength which can be calculated by some numerical values
called weights [107,108].

The detailed computational steps of the working principle of an artificial neuron
in a neural network can be seen in Fig. 1.

A neuron Ni receives inputs n which belong to S = {xj | j = 1, 2, . . . , n}. Each
input is multiplied by a weight factor wij for j = 1, 2, . . . , n before entering to the
neuron Ni. In general, this neuron has a bias term w0 and a critical value θk. To
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Fig. 1. Basic model of multi-inputs one-output neuron.

produce the output signal, this critical value must be reached and/or exceeded. The
input of the ith neuron Ni in the input layer can be written as

vi = w0 +
n∑

k=1

wikxk. (16)

The neurons in the input layer can work only if the signal reaches/exceeds the
critical value which can be defined as the neuron’s working condition as

w0 +
n∑

k=1

wikxk ≥ θ. (17)

All the input signals are multiplied by their synaptic weights and added together.
This compose “net” input to the neuron:

net =
∑
k=1

wikxk + θ, (18)

where θ is the threshold (i.e. critical) value. The output signal of ith neuron Ni can
be functionalized as

Oi =

(
w0 +

n∑
k=1

wikxk

)
. (19)

An activation function acts on the produced weighted signal which is denoted as
σ(s). The output signal y can be obtained by mapping this activation function as

y = σ(net) = σ

⎛
⎝ n∑

j=1

wijxj + θ

⎞
⎠, (20)

where σ denotes the neuron activation function. This output function is suggested
together with a critical function. In this work, we will use a sigmoid activation

2150154-7
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Fig. 2. A sample architecture of an ANN.

function

σ(x) =
1

1 + e−x
(21)

which is a traditional one for obtaining solutions in nonlinear problems.
A diagram of a multilayer ANN is given in Fig. 2.
The information are given to the input layer, which sends the information to

the hidden layer, if any exists. The processing of inputs is being done at this stage
via a system of weighted connections. The hidden layers send the information to
the output layer and an answer is given to the outside world. In Fig. 2, xj are input
nodes, ωij are weights from input to the hidden layer (or layers if exist), and νi are
synaptic weights from hidden to the output layer y which is the output node [107].
The neurons in the same layer have no connection among themselves. If there is
more than one hidden layer, the architecture is known as deep neural network which
is out of the scope of this work.

In this work, we used an architecture which consists of one input layer, one
hidden layer and one output layer. This ANN architecture can be seen in Fig. 3.
Neurons are arranged into distinct layers with each layer receiving input from the
previous layer and outputting to the next layer. In this manner, neurons (processing
elements) in a layer receive input from the previous layer and send (feed) their
output to the next layer.

Initial weights from the input layer to the hidden layer (wj) and from the hidden
layer to the output layer (vj) are taken as arbitrary (random). The number of nodes
in the hidden layer is determined by the trial-and-error method.

3.1. Implementation of ANN on quantum systems

The framework for FNNM to obtain solutions of eigenvalue equations was developed
in [109]. A differential equation can be written as

HΨ(r) = ℘(r), in D (22)

2150154-8
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Fig. 3. ANN architecture of this work.

with

Ψ(r) = 0 on ∂D. (23)

Here, H is a linear operator, ℘(r) is a known function and ∂D is the boundary of
D. In order to solve Eq. (22), a trial function

Ψt(r) = A(r) + B(r, λ)N(r,p) (24)

can be used. This function proceeds to a neural network with a vector parameter
p and undetermined parameter λ which is going to be adjusted later. N(r,p) is a
single-output feed forward neural network with parameters p and n input units fed
with the input vector r. The functions A and B will be determined with respect to
appropriate Ψt(r) which satisfies the boundary conditions.

To solve Eq. (22), the collocation method [110] can be used. The idea behind the
collocation method is to choose a finite-dimensional space of trial solution functions
and a number of points in the domain of the problem, and to select that trial solution
which satisfies the given equation at the collocation points. This procedure discrete
the domain into a set of ri. To this end, one can get a minimization problem as
follows:

min
p,λ

∑
i

[HΨt(ri) − ℘(ri)]2. (25)

To have the Schrödinger equation, one can recast Eq. (22) in an eigenvalue equation:

HΨ(r) = ω2Ψ(r) (26)
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with the boundary condition Ψ(r = 0) = 0. Before obtaining QNMS via FFNM, an
important notice should be done. In this work, we assume the foreknown definition
of the QNMs that these modes are purely outgoing waves at the event horizon of
black hole rh, where is the boundary defining the region of space around a black
hole from which nothing (not even light) can escape and vanish at r = 0 [78]. These
boundary conditions are determined by the behavior of the effective potential: recall
Eqs. (6) and (15), which are obtained for dS and AdS spacetimes, respectively. Thus,
the trial solution becomes

Ψt(r) = B(r, λ)N(r,p), (27)

where B(r, λ) = 0 at boundaries for a range of λ values. Employing the discretiza-
tion for the domain of the problem together with the collocation method, a mini-
mization problem can be obtained with respect to the p and λ:

E(p, λ) =
∑

i

[
HΨt(ri,p, λ) − ω2Ψt(ri,p, λ)

]2∫ |Ψt|2dr , (28)

where E represents the error function. Furthermore, ω2 is obtained as follows:

ω2 =
∫

Ψ∗
t HΨtdr∫ |Ψt|2dr . (29)

Thus, the energy eigenvalues or the QNMs are given by

ω =

(
1∫ |Ψt|2dr

[∫ r2

r1

(
dΨt

dr

)2

dr +
∫ r2

r1

V0(r)Ψ2
t (r)dr

]) 1
2

, (30)

where r2 represents the location where the scalar field becomes pure plane wave
(ingoing/outgoing) and r1 indicates the radial position where the effective potential
diverges and whence causes the waves to be completely damped (i.e. Ψt = 0).
Therefore, while r1 = 0 and r2 = rh for the pure dS BH, in the AdS BH we take
r1 = ∞ and r2 = r+. V0 corresponds to the effective potential of the spacetime
taken into account.

The parameter p is nothing but the weights and biases of the ANN. Although
the multi-layer sensor (MLP) has many hidden layers, here we use a simple model of
a single hidden layer MLPs. In this study, we also consider a multilayer perception
with n input units, one hidden layer having m units, and an output. Given an input
vector

r = (r1, . . . , rn), (31)

the output of the neural network can be written as

N =
m∑

i=1

νiσ(zi), (32)
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where

zi =
n∑

j=1

γijrj + ui. (33)

Here, γij are the weights from input unit j to the hidden unit i, νi is the weight
from hidden unit i to the output unit, ui represents the bias of hidden unit i, and
σ(z) is the sigmoid function, which is given in Eq. (21). The derivatives of the ANN
output can be written as

∂kN

∂rk
j

=
m∑

i=1

νiγ
k
ijσ

(k)
i , (34)

where σi = σ(zi) and σ(k) is the kth order derivative of the activation (sigmoid)
function.

One can parametrize the solution trial function as

φt(r) = e−βr2
N(r,u,w,v), β > 0, (35)

where N denotes a feedforward neural network with one hidden layer and m sigmoid
hidden units

N(r,u,w,v) =
m̄∑

j=1

νjσ(ωjr + uj). (36)

The minimization problem turns out to be as∑
i

[
Hφt(ri) − ω2φt(ri)

]2∫ |φt(r)|2dr
. (37)

Solving this equation is equivalence to solving Schrödinger equation. The mini-
mization problem can be solved via collocation method. In this method, one chooses
a finite-dimensional space of solution trial function which is supposed to solve given
differential equation with a number of points in the domain.

In order to obtain the desired result, ANN needs to learn. Solving a differential
equation within ANN method requires training of the ANN. This learning process
can be done in different ways. In this work, we used error back-propagation learning
algorithm. This learning algorithm is one of the most common used learning rules
and it is valid for continuous activation function such as sigmoid function Eq. (21).
By taking the partial derivative of the error function according to each weight, we
can monitor the flow of the error direction in the network. The steps for the learning
algorithm of back-propagation are as follows [107,108]:

(1) Set the weights w and v from the hidden to the output layer. Choose the
learning parameter in the range (0, 1), and error Emax. At the first step, error
is taken to be zero.

(2) Train the network.
(3) Find the output of error function.

2150154-11
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(4) Calculate the error signal terms by output and hidden layers, respectively.
(5) Calculate the error components for gradient vectors.
(6) Check if weights are adjusted appropriately.
(7) If E = Emax, then cease the training. If not, proceed to step 2 by setting E → 0

and initiate the new training.

The crucial point for the training process is taking the eigenvalue (error function)
E as zero and train the neural network with equidistant points in the given interval
of the problem. It is expected that this process yields energy function (eigenvalue)
to be zero or at least converge to zero. If the convergence is not obtained, then the
eigenvalue is wrong. If this happens, eigenvalue should be changed in a proper way
and the training process should be restarted. It should be keep doing this process
until the energy (error) function converges to zero.

It should also be noted that the method for solving differential equations with
ANNs does not depend on the training method: The choice of training method only
affects the speed of the training procedure.

Table 1. Comparison of FNNM QNMs with numerical
QNMs obtained, via the superpotential approach method,
for the AdS spacetime [101] (for l = 0.001 case). Percentual
error (PE) rates are given.

(n, �) This work [78] PE (%)

(0, 0) 0. − 3017i 0. − 3000i 0.56
(0, 1) 0. − 3994i 0. − 4000i 0.15
(1, 1) 0. − 6012i 0. − 6000i 0.2
(0, 2) 0. − 5024i 0. − 5000i 0.48
(1, 2) 0. − 7019i 0. − 7000i 0.27
(2, 2) 0. − 9037i 0. − 9000i 0.41
(0, 3) 0. − 6072i 0. − 6000i 1.2
(1, 3) 0. − 8056i 0. − 8000i 0.7
(2, 3) 0. − 10094i 0. − 10000i 0.94
(3, 3) 0. − 12103i 0. − 12000i 0.85

Table 2. Comparison of FNNM QNMs with analytical QNMs obtained for the pure dS spacetime
[78]. PE rates are also shown.

Radius, r+ This work [101] PE (%) real PE (%) imaginary

1 0.6960 + 1.4629i 0.6948 + 1.4648i 0.17 0.12
2 1.0774 + 1.9849i 1.0713 + 1.9817i 0.56 0.16
5 2.4407 + 4.2689i 2.4462 + 4.2642i 0.22 0.11

10 4.8205 + 8.3285i 4.8249 + 8.3279i 0.09 0.07
50 24.0731 + 41.3784i 24.0159 + 41.3183i 0.23 0.04

100 48.0376 + 82.6577i 48.0251 + 82.6165i 0.02 0.01
150 72.0373 + 123.9374i 72.0358 + 123.9190i 0.06 0.01
500 240.1166 + 413.0576i 240.1150 + 413.0500i 0.01 0.01
750 360.1145 + 619.5867i 360.1720 + 619.5740 0.01 0.01

1000 480.2143 + 826.0761 480.2290 + 826.0980 0.03 0.02
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3.2. QNMs of Pure dS and AdS-Schwarzschild BHs via FNNM

To derive the QNMS of the pure dS and AdS-Schwarzschild BHs, we first consider
Eqs. (6) and (15), respectively, in Eq. (30), then compute the QNMs with the
expression seen in Eq. (30). To this end, we employ the Gauss–Legendre rule [109]
and use 200 equidistant points in the interval 0 < r < 10 with m̄ = 10. In Tables 1
and 2, we represent our findings, which are the numerical values (via the FNNM
within the context of supervised learning) of the QNMs of the pure dS and AdS
spacetimes. It can be seen from those tables that FNNM satisfactorily re-derives
the well-accepted QNMs’ results obtained from the other methods [78, 101]. Thus,
we have managed to introduce a new and effective method to the literature for
computing the QNMs.

As mentioned above, the main advantage of using ANN is to solve the
Schrödinger equation. However, the computational complexity while using the ANN
does not increase considerably with the number of sampling points and with the
number of dimensions in the problem. Depending on the learning algorithm, the
running CPU time can be lowered significantly to obtain the solution. On the other
hand, we shall not perform any CPU time comparison in this study, because it is
irrelevant with the scope of the paper.

4. Conclusions

In this study, we have prescribed a new method, FNNM, to study the QNMs of
BHs that posses particular boundary conditions as being described in Sec. 2. To
test the method, we have considered the 4D pure dS and 5D AdS-Schwarzschild
BHs. Scalar field perturbations have been treated as oscillations in the frequency
domain of those static and symmetric backgrounds. In each geometry, the perturbed
scalar fields are reduced to 1D Schrödinger-like wave equations with the associated
effective potential. Imposing the required boundary conditions given in [78, 101],
we have demonstrated how the FNNM derives the QNMs: the resulting formula is
Eq. (30). After comparing our findings with the previous results obtained by the
analytical method [78] and the superpotential approach (numerical) method [101],
it is seen that the all results are in good agreement with each other. Therefore,
FNNM is not only an alternative but an effective way for computing the QNMs
that are important for the stability of a BH and the late-time behavior of radiation
from gravitationally collapsing configurations. On the other hand, one may ask
that how about for neural network solutions to the completely unknown problems.
For such a case, the architecture and training processes must be different than
the FNNM that we employed here. In fact, such an architecture is more about
interacting with “experimental data” like “a direct adaptive neural network method”
[111] in which the system took into account was described by an unknown NARMA
model [111] and the FNNM was considered to learn the system. By taking the
FNNM as a neural model, the control signals can easily be obtained by minimizing
momentary difference or cumulative differences between a set point and the output
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of the FNNM. Since the training algorithm can ensure that the output of the FNNM
approaches to the real system, then it can be demonstrated how the obtained control
signals make the real system output as being close to the set point [112]. However,
such an algorithm cannot be established without having experimental data on the
BHs that we work with. Namely, with the development of technology related to the
BHs, it might be possible to construct such a neural network algorithm.

Further work to determine the QNMs of rotating and/or higher/lower dimen-
sional dS/AdS spacetimes via the FNNM could therefore be interesting. Besides,
we aim to extend our analysis to the Dirac (e.g. the reader is referred to this recent
study [113]) and Maxwell equations that are formulated in the Newman–Penrose
formalism [114–116] in the near future. Moreover, starting from Kerr BH, we also
plan to analyze the QNMs [117–121] of various stationary spacetimes.

Appendix A. Appendices

Metric of the Reissner–Nordström BH of mass M and charge Q is given by

ds2 = −Δ
r2

dt2 +
r2

Δ
dr2 + r2(dθ2 + sin2 θdϕ2), (A.1)

where Δ = r2 − 2Mr + Q2. The locations of the event horizon and of the Cauchy
horizon are r+ = M +

√
M2 − Q2 and r− = M −

√
M2 − Q2, respectively. To

investigate the bosonic perturbation of the Reissner–Nordström BH, one should
consider the scalar field Φ, which obeys the Klein–Gordon equation (2), propagating
in a Reissner–Nordström BH geometry. For the chargeless case with an Ansatz
Φ = R0(r)Y 0

jm(θ, φ)e−iωt, the radial components of the fields can be found as
follows [122]:

d

dr

(
Δ

dR0

dr

)
+
(

K2

Δ
− λ

)
Rs = 0, (A.2)

where K = ωr2 and λ = �(�+1) is a separation constant. If one makes the following
transformation f0 = rR0 and adopt the tortoise coordinate r∗ (defined here as
dr∗/dr = r2/Δ), the radial equation (A.2) recasts in

d2f0

dr2∗
+ W0(ω, r∗)f0 = 0, (A.3)

where the complex function W0 is given by

W0(ω, r∗) =
Δ
r4

[
K2

Δ
− 2

M

r
+ 2

Q2

r2
− λ

]
. (A.4)

By comparing Eqs. (14) and (A.3), one can easily derive the effective potential
of the Reissner–Nordström BH:

V RN
0 (r) =

Δ
r4

[
2
M

r
− 2

Q2

r2
+ λ

]
. (A.5)
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Following the Leaver’s [123, 124] original continued fraction method (CFM),
which was later improved by Nollert [125], with the effective potential (A.5),
Richartz and Giugno [126] obtained the numerical values of the QNMs of the
Reissner–Nordström BH. Comparing the numerical results of [126] with the results
to be obtained from FNNM might be more meaningful and beneficial for the reader.
For this purpose, we have created Table 3, which obviously shows how the two
methods produce very close values.
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[14] I. Sakalli, K. Jusufi and A. Övgün, Analytical solutions in a cosmic string Born–
Infeld–Dilaton black hole geometry: Quasinormal modes and quantization, Gen.
Relativity Gravitation 50(10) (2018) 125.
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[27] X. M. Kuang, J. Saavedra and A. Övgün, The effect of the Gauss–Bonnet term to
Hawking radiation from arbitrary dimensional black brane, Eur. Phys. J. C 77(9)
(2017) 613.
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