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We construct traversable thin-shell wormholes which are asymptotically Ads/dS applying the cut and
paste procedure for the case of an acoustic metric created by a relativistic Bose-Einstein condensate. We
examine several definitions of the flare-out condition along with the violation or not of the energy
conditions for such relativistic geometries. Under reasonable assumptions about the equation of state of the
matter located at the shell, we concentrate on the mechanical stability of wormholes under radial
perturbation preserving the original spherical symmetry. To do so, we consider linearized perturbations
around static solutions. We obtain that dS acoustic wormholes remain stable under radial perturbations as
long as they have small radius; such wormholes with finite radius do not violate the strong/null energy
condition. Besides, we show that stable Ads wormhole satisfy some of the energy conditions whereas
unstable Ads wormhole with large radii violate them.
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I. INTRODUCTION

One of the most fascinating outcomes of Einstein’s theory
of gravity concerns to the existence of wormhole-like
geometries. Such hypothetical tunnels connect widely sep-
arated regions of spacetime from where ingoing causal
curves can pass through and become outgoing on the other
side [1]. Since the seminal work of Morris and Thorne based
on classical traversable wormholes [1], the theoretical
progress on traversable wormholes was mainly motivated
by the possibility of constructing timemachines [2] by taking
into account relative motions of two wormhole’s mouths, or
equivalently the gravitational redshifts at the mouths due to
external gravitational fields might produce closed timelike
curves [2].However, one issue related towormholephysics is
that within general relativity static wormholes are supported
by exotic matter, which implies that the weak energy
condition (WEC) is violated [3,4].Nevertheless, some efforts
were devoted to reduce the amount of exotic matter as much
as it is physically possible [4]. For instance, Visser et al.
developed a suitable measure for quantifying this notion and

demonstrated that traversablewormholes can be sustained by
an arbitrarily small amount of exotic matter [5]. In the case of
dynamical Lorentzianwormholes featured by an overall time
dependent conformal factor was possible to achieve con-
figurations where WEC is not violated [6]. In fact, nonstatic
Lorentzian wormholes which evolve from a dS phase toward
a Friedmann-Robertson-Walker (FRW) spacetime not need
to be threatened by exotic matter [7,8]. Besides, any attempt
to construct thin-shell wormholes requires the use of the cut-
and-paste procedure [3] and works with the junction con-
ditions associated with the gravity theory under study [9,10].
Spherically thin-shell wormholes within the context of
general relativity were built, and it was found that, in most
of the cases, the wormholes are supported by exotic matter
also, violating the energy conditions [3,4].
It has been realized recently that starting from a

relativistic Bose-Einstein condensate (BEC) [11–13] one
could (partially) reconstruct the notion of a curved mani-
fold along with the general relativity scheme from first
principles by means of the emergent gravity paradigm [14–
17]. BEC are described by means of a self-interacting
complex scalar field coupled to an external potential. In
doing so, the dynamic of condensed boson is governed by a
non-linear Klein-Gordon equation and it leads to Gross-
Pitaevskii equation in the nonrelativistic limit [12].
Splitting the scalar field as a (classical) condensate field
plus a quantum perturbation and using a Madelung

*martin@df.uba.ar
†inessalako@gmail.com
‡jpmorais@gmail.com
§h.moradpour@riaam.ac.ir∥ali.ovgun@pucv.cl

PHYSICAL REVIEW D 96, 084022 (2017)

2470-0010=2017=96(8)=084022(12) 084022-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.084022
https://doi.org/10.1103/PhysRevD.96.084022
https://doi.org/10.1103/PhysRevD.96.084022
https://doi.org/10.1103/PhysRevD.96.084022


representation for the mean (condensate) field, one can
prove that the dynamic of phonon perturbation is governed
by a modified Klein-Gordon equation [12]. At the linear
level, the phonon propagates as a massless scalar field in
the geometry created by the condensate field. So, one can
read off the effective (acoustic) metric created by the
condensate from the wave equation satisfied by the
phonons. Naturally, the emergent geometry associated with
the effective metric created by the condensate only involves
the classical density of the condensate, its four-velocity and
a function which encodes its interaction strength [12,13].
Another interesting fact is that the emergent geometry is
disformally related to the Minkowski background, but most
importantly, such effective metric can be mapped into
Schwarzschild-AdS and dS black holes, up to a conformal
factor, by choosing the normalized velocity profile properly
[18]. Even better, 3-dimensional planar AdS black holes
can be exactly obtained from a nonrelativistic BEC.
However, higher dimensional black holes are conformally
mapped into acoustic geometries [18].
The plan of the paper is the following: we first consider

the main ingredient of the Bose-Einstein condensate in both
relativistic and nonrelativistic regime and how an effective
acoustic metric associated with the classical condensate
emerges (Sec. II). In Sec. III, we address the construction of
thin-shell wormholes using the cut-and-paste procedure
and discuss the fulfillment of the flare-out condition for
such configurations and the analysis of the energy con-
ditions amongst other topics. Section III is devoted to the
analysis of the stability of the wormhole throat by choosing
an equation of state for the matter located at the wormhole
throat. In Sec. IV, the conclusion are stated. The signature
of the metric is ð−;þ;þ;þÞ.

II. RELATIVISTIC BEC AND
EMERGENT GRAVITY

Westartwith the notion ofBECand its connectionwith the
emergent gravity paradigm [12,13]. The analogue gravity
formalism relies on the idea that after the equations of fluid
dynamics have been linearized under appropriate conditions,
the perturbations are accommodated as quasiparticles which
obey a relativistic equation of motion in a curved spacetime.
In such scheme, the emergent geometry (or acoustic metric)
is created by the condensate field whereas the phonons
propagate as massless particles in the aforesaid background.
To show so, let us consider a massive complex scalar field
with a self-interacting potential, Us, in the presence of an
external field, Vext. Its Lagrangian reads

L ¼ −ημν∂μϕ
⋆∂νϕ −

�
m2c2

ℏ2
þ Vext

�
jϕj2 − Usðjϕj; λiÞ;

ð1Þ

wherem stands for the boson’smass, c is the speed of light,ℏ
is the Planck’s constant, λi denotes some coupling constants,

and ημν is theMinkowski tensor.An interesting fact regarding
(1) is that it remains invariant under the global Uð1Þ
symmetry. The global charge is the difference between the
particle number of the ensemble composedN bosons and the
particle number for the anti-boson ensemble N̄, then the
Noether’s theorem enables us to determine its associated
(conserved) current, i.e. Jμ ¼ iðϕ⋆∂μϕ − ϕ∂μϕ⋆Þ. We
emphasize that there is an integral expression for the
conserved number density n in terms of its critical temper-
ature Tc (cf. [12]) when the ensemble is composed of
noninteracting particles characterized by Us ¼ Vext ¼ 0.
Consequently, the behavior of the number density with the
critical temperature in the ultrarelativistic limit and non-
relativistic limit can be extracted from that formula (for a nice
review see [12] and references therein). Interestingly enough,
for temperatures below the critical one, the dynamic of the
relativistic boson condensate is governed by a modified
Klein-Gordon equation:

ημν∂μ∂νϕ −
�
m2c2

ℏ2
þ Vext

�
ϕ − U 0

sϕ ¼ 0: ð2Þ

For T ≪ Tc the thermal effects are neglected, so one
decomposes the scalar field as a BEC field (ground state)
plus its excitations by using the following parametrization,
ϕ ¼ φð1þ ψÞ being φ ¼ hϕi the condesated part. The
condensate field satisfies the samemodifiedK-Gequation (2).
Replacing the previous ansatz in (2), we arrived at the master
equations which obey the condensate part plus the wavelike
equation for the phonons:

ℏ2

m2

�
Vext þ U 0

sðρ; λiÞ −
ημν∂μ∂ν

ffiffiffi
ρ

pffiffiffi
ρ

p
�

¼ −uμuμ − c2; ð3Þ

�
Dc−10 D† −

ℏ2

ρ
ημν∂μρ∂ν

�
ψ ¼ 0; ð4Þ

where we have employed a Born-like identification
for the four-velocity, namely uμ ≡ ðℏ=mÞ∂μθ. We also
defined the operator D ¼ iℏuμ∂μ þ Tgk being Tgk ¼
−ðℏ2=2mÞ½ημν∂μ∂ν þ ημν∂μ ln ρ∂ν� (generalized kinetic
operator). The curvature of the self-interacting boson poten-
tial is encoded in the strength interaction function called
c20 ¼ ðℏ2=2mÞρU 00

s . Notice that the conserved current sat-
isfies the continuity equation: ∂μJμ ¼ ∂μðρuμÞ ¼ 0.
To analyze further how the acoustic metric emerges for

the quantum perturbation it might be useful to introduce a
series of well accepted approximations. We are going
to work within the phononic (infrared relativistic) regime,
which implies that Eq. (4) emulates the dispersion
relation of phonons, ω ¼ csk, where the squared speed
of sound is c2s≡½ðcc0=u0Þ2=ð1þðc0=u0Þ2Þ�. Notice that
such assumption is equivalent to the low-momentum
condition derived in Ref. [12]. Second, all relevant back-
ground quantities will vary slowly over scale comparable
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with the perturbation wavelength, thus j∂tX=Xj ≪ w with
X ¼ fρ; uμ; c0g. The point is to have a situation where the
generalized kinetic operator can be neglected so we can
guarantee that the low energy limit holds. Then, neglecting
the quantum contribution encoded in Tgk and using the
∂μJμ ¼ 0, Eq. (4) can be written as

∂μðγμν∂νψÞ ¼ 0: ð5Þ

Here we introduced the auxiliary metric tensor
γμν ≡ ðρ=c20Þ½−uμuν þ c20η

μν�. In order to make the
D’Alembertian operator appears in (5) it is mandatory
that to perform an identification such as γμν ≡ ffiffiffiffiffiffi−gp

gμν

with
ffiffiffiffiffiffi−gp ¼ ρ2½1 − uνuν=c20�1=2 so the inverse metric

is given by gμν ¼ γμν=
ffiffiffiffiffiffi−gp

. Calculating the inverse
of gμν we obtain the effective or acoustic metric for
the phonon perturbations, that explicitly reads gμν ¼
ðρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − uβuβ=c20

q
Þ½ημνð1 − uβuβ=c20Þ þ uνuμ=c20�. In terms

of the acoustic metric (5), one finds that Eq. (5) takes the
traditional form of the wave equation for a massless
scalar field (phonon) in curved spacetime: △ψ ¼
ð1= ffiffiffiffiffiffi−qp Þ∂μ½ ffiffiffiffiffiffi−gp

gμν∂νψ � ¼ 0. For practical purposes, we
write the acoustic metric in a more useful form as follows

gacousticμν ¼ Ω
�
ημν þ

�
1 −

c2s
c2

�
vμvν

c2

�
; ð6Þ

where the conformal factor is defined asΩ ¼ ρc=cs and the
normalized four velocity field is vμ ≡ cuμ=juj. The shift
introduced by the dyadic tensor vμvν shows up that the
acoustic metric is disformally related with the Minkowski
background. Besides, as it was done previously in Ref. [18]
one must write the above metric (6) in “Minkowskian”
coordinates (ct, xi) used in the lab system. The line element
in that coordinates takes the next form

ds2ac ¼ Ω½G00c2dt2 þ 2G0icdtdxi þ Gijdxidxj�: ð7Þ

The coefficients of the effective metric are listed below

G00 ¼ −1þ ξ
v20
c2

; G0i ¼
v0vi
c2

; Gij ¼ δij þ ξ
vivj
c2

:

ð8Þ

Here we introduced the parameter ξ ¼ 1 − c2s=c2. With the
help of the normalization condition, v2 ¼ −c2, one can
recast the above coefficients (8) by changing v0 ¼
�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jvij2=c2

p
. Eq. (7) tells us that the nonrelativistic

limit is reached by imposing the regime of low velocity
(v ≪ c plus cs ≪ c, that is, ξ≃ 1) along with the weak
interaction condition, namely c0 ≪ c.
Before embark us in the construction of thin-shell

wormholes it is essential to prove that (7) can be recast

in a suitable form, where it takes a diagonal form [18].
To do so, one must implement a change of coordinates
given by

cdt ¼ cdη� Pidxi; ð9Þ

where the field Pi ≡ ξðv0vi=c2Þ=½−1þ ξv20=c
2�. As it was

noticed by Cropp et al. [19], the vector field must be
obtained from a scalar function (Pi ¼ ∇iϕ). This implies
that an integrability condition should hold: ϵijk∂jPk ¼ 0.
Taking into account the latter facts, Eq. (9) helps us to
recast the metric in a new stationary form given by the line
element:

ds2ac ¼ Ω
�
−ðc2s − ξjv̄j2Þdη2 þ

�
δij þ

ξvivj
c2s − ξjv̄j2

�
dxidxj

�
:

ð10Þ

An interesting point regarding (10) is that by choosing
properly the velocity profile vi, one can show that the above
metric can be mapped into black holes which are asymp-
totically AdS or dS at the spatial infinity [18,19]. To do so,
we simply follow the recipe adopted in [18,19]. Let us start
by considering the metric associated with Ads/dS black
holes in a spherical coordinate patch (cη, r, θ, ϕ):

ds2bh¼ fðrÞc2sdη2þgðrÞdr2þ r2ðdθ2þ sin2θdφ2Þ; ð11Þ

where the metric coefficient are fðrÞ¼ ½gðrÞ�−1 ¼
½1− ðr0=rÞ�ðr=LÞ2� with r0 a constant. The cosmological
constant is Λ ¼ L−2 and the � denotes if the black hole is
asymptotically Ads (+) or dS (-), respectively. To demon-
strate that the black hole metric (11) can be mapped into the
relativistic effective metric of BEC (10), we propose that
the velocity field must be spherically symmetric, and thus
the only nonzero component is the radial one, v̄ ¼ viδri .
After having compared the η − η component of the
line elements (10)–(11), we arrive at the profile of
normalized velocity field, v2r ¼ ðc2s=ξÞ½ðr0=rÞ ∓ ðr=LÞ2�.
The unnormalized vector field can be easily obtained
by using the definition of vμ. As a consequence we
obtain the nice relation ur ¼ ðvr=v0Þu0 or equivalently
ur ¼ ½vr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2r=c2

p
�ðu0=cÞ. Taking into account all the

mentioned facts, the unnormalized radial flow is given by

ur ¼ u0cs
c

ffiffiffi
ξ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
r ∓ r2

L2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2s

c2ξ

�
r0
r ∓ r2

L2

�s : ð12Þ

At this point, we use the continuity equation in spherical
coordinates to reconstruct the density profile. Using that
∂rðrρurÞ ¼ 0, we find that ρ ¼ ρ0=½rur� with ρ0 a constant.
Some comments are in order. The above results show that it
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is possible to connect black holes metric with acoustic
effective geometry associated with BEC up to a conformal
factor, nevertheless, we would like to stress that such
relation can be extended at the level of the gravitational
field equation. To be more precise, it was shown by Dey
et al. [18] that the gravitational field equations of the
relativistic BEC share some similarity with the Einstein-
Fokker equation for a Nordstrom gravity (see the
Appendix A of Ref. [18]). Having said that, let us also
mention that analogy is not completely due to the extra-
conformal factor of the acoustic metric. Notice that in the
case of asymptotically Ads background, the velocity profile
together with the density profile are well definite as long as
the inequality r3 < r0L2 can be guaranteed. Finally, the
acoustic black hole metric can be recast as

ds2acbh ¼ ½−Fdη2 þ Gdr2 þHðdθ2 þ sin2 θdφ2Þ�; ð13Þ
where the metric coefficients are given by

F ¼ ΩfðrÞc2s ; G ¼ Ω½fðrÞ�−1; H ¼ Ωr2: ð14Þ
To end with this section, let us just mention that the acoustic
black hole has particular regions which deserve some
particular attention. For the acoustic Ads (+) solution we
have that the spacetime is similar to the Schwarzschild black
hole for small r, up to the conformal factor, and approaches to
Ads space for large r. The black hole exhibits an event
horizon at r ¼ rþ, corresponding to the largest root of
fðr ¼ rþÞ ¼ 0. On the other hand, the dS case has different
possibilities to examine. Let us begin by noting that the
condition fðrÞ ¼ 0 is equivalent to r3 − L2rþ L2r0 ¼ 0,
which might have different kinds of roots depending on the
relation between L and r0. The discriminant of the cubic
equation, namelyΔ ¼ L4½ðr0=2Þ2 − ðL2=27Þ�, is the respon-
sible for the classification of the roots. For r0 ¼ 2L=3

ffiffiffi
3

p
, all

roots are real and one is a double root while in the case of
r0 > 2L=3

ffiffiffi
3

p
two roots are complex conjugate and one is

real. For r0 < 2L=3
ffiffiffi
3

p
, the cubic equation only has

real roots.

III. THIN-SHELL CONSTRUCTION FOR
ACOUSTIC BLACK HOLE

A. General method

In this section, we are going to make use of the cut-and-
paste procedure to derive the geometry associated with
thin-shell wormholes. To begin with, we consider the
acoustic black hole metric (13) in order to build a spheri-
cally symmetric acoustic thin-shell wormhole. For the
asymptotically Ads metric, we take two copies of the
space-time and remove from each manifold the four-
dimensional regions which contain event horizons, so
the restricted spacetime is described by

MAds� ¼ fx=r� ≤ a; a > rþg: ð15Þ

Note that a is chosen to exclude possible singularities or
horizons within the region M�. Here, we see that for an
asymptotically dS black hole, we must exclude the event
horizon along with the cosmological horizon, namely we
ended up with the patch MdS� ¼ fx=a ≥ r−∩a ≤ rþg.
Hence, we are dealing with wormholes with finite radii in
the latter case. The resulting manifolds have boundaries
given by the time-like hypersurfaces,

Σ�Ads ¼ fx=r� ¼ a; a > rþg: ð16Þ
In the dS case the boundaries are described by the surface
Σ�dS ¼ fx=r� ¼ a; a ∈ ðr−; rþÞg. Then we identify these
two time-like hypersurfaces to obtain a geodesically
complete new manifold M ¼ Mþ∪M−=Σ�, with a mat-
ter shell at the surface r ¼ a where the throat of the
wormhole is located (see Fig. 1). This manifold is con-
stituted by two regions which are asymptotically Ads/dS,
respectively. To study this type of wormholes we apply the
Darmois-Israel formalism [3,9] to the case of the acoustic
metric given by BEC. We should stress this procedure is
possible because several authors pointed out that the
gravitational field equations of the relativistic BEC share
some similarity with the Einstein-Fokker equation for a
Nordstrom gravity (cf. [18]). Then, the projected field
equations have to be analogue to the Darmois-Israel
formalism [3,9]. In any case, we can take such junction
conditions as the effective ones as well. We can introduce
the coordinates ξa ¼ ðτ; θ;ϕÞ in Σ, with τ the proper time
on the throat. We will focus not necessarily in static
configurations only, then the boundary hypersurface reads:

Σ∶Hðr; τÞ ¼ r − aðτÞ ¼ 0: ð17Þ
The field equations projected on the shell Σ are [3],

Sab ¼ −
1

8π
hKab − γabKi; ð18Þ

where the bracket h:i stands for the jump of a given quantity
across the hypersurface Σ and γab is the induced metric on
Σ. The extrinsic curvature Kab is defined as follows:

FIG. 1. Schematic representation for the wormhole geometry
obtained after performing the cut and paste procedure. The shell
on Σ is located at the throat radius r ¼ a.
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K�
ab ¼ −n�A

� ∂2XA

∂ξa∂ξb þ ΓA
BC

∂XB

∂ξa
∂XC

∂ξb
�

r¼a
; ð19Þ

where n�A ¼ ðnη; nr; 0; 0Þ are the unit normals to the surface
Σ. In order to proceedone canwrite the intrinsicmetric toΣ as

ds2Σ ¼ −dτ2 þHðaÞðdθ2 þ sin2 θdϕ2Þ: ð20Þ

The position of the junction surface is given by XA ¼
ðηðτÞ; rðτÞ; θ;ϕÞ and the corresponding 4 velocity is
uA ¼ ð½_ηðτÞ; _rðτÞ; 0; 0; 0Þ, where the dot stands for derivative
with respect to τ and the surface Σ is parametrized by giving
η ¼ ηðτÞ and r ¼ aðτÞ. The unit normal to the shell may be
determined by the conditions uAnA ¼ 0 and nBnB ¼ 1.
These requisites lead to the following expression:

n�A ¼ ϵð− _a½F ðaÞGðaÞ�1=2; ½GðaÞð1þ GðaÞ _a2Þ�1=2; 0; 0Þ;
ð21Þ

where ϵ ¼ � indicates if the normal is outward-pointing or
inward-pointing, respectively. We next compute the mixed
components of the extrinsic curvature (second fundamental
form)

hKτ
τi ¼

ffiffiffiffiffiffiffiffiffiffi
GðaÞ
l

r �
2äþ F 0ðaÞ

F ðaÞGðaÞ þ _a2
�
F 0ðaÞ
F ðaÞ þ

G0ðaÞ
GðaÞ

��
;

ð22Þ

hKϕ
ϕi ¼

ffiffiffiffiffiffiffiffiffiffi
l

GðaÞ

s
H0ðaÞ
HðaÞ ¼ hKθ

θi: ð23Þ

Here, lða; _aÞ ¼ 1þ GðaÞ _a2 and the prime stands for deriva-
tive with respect a. Before analyzing the physical conse-
quences of our model, we need first to determine the energy-
momentum for the matter located at thewormhole throat. To
do so, we write down the most general form of the stress-
energy tensor on the shellwhich is compatiblewith the space-
time symmetries

Sa
b ¼ diagð−σ; Pθ; PθÞ: ð24Þ

We want to determine the form of the energy density and
tangential pressure in terms of themetric coefficients and the
derivatives of thewormhole’s throat. Theway to achieve such
goal is by combining the junction conditions (18), and the
mixed components of the second fundamental form (23)–
(22) along with the stress tensor (24). After some algebraic
manipulation, we obtain that the energy density and the
tangential pressure can be recast as

σ ¼ −
1

4π

H0

H

�
l
G

�1
2

; ð25Þ

Pθ ¼
1

8π

�
G
l

�1
2

�
2äþ F 0

FG
þ H0

HG
þ _a2

�
F 0

F
þ G0

G
þH0

H

��
:

ð26Þ

The conservation equation for the wormhole’s throat [20]
reads

∇aSa
b ¼ −

�
Tαβ

Xα

∂ξb n
β

�
; ð27Þ

where the operator ∇ denotes the covariant derivative with
respect to the induced metric and Tαβ indicates the energy-
momentum associated with the bulk matter. Equation (27)
tells us that there is a transfer of energy between the shell
located at Σ and the bulk M,

_½σA� þ p _A ¼ δQ ¼ −
σ

2
A _a

�
F 0

F
þ G0

G
þH0

H
− 2

H00

H0

�
:

ð28Þ

Note that δQ vanishes for solutions with high spherical
symmetry which fulfill the next relationships: i-i-G ¼ F−1

and ii-H ¼ r2. Nevertheless, this is not our case provided the
global factor Ω appears in all the coefficients of the metric,
which in turn spoils all the possible cancellations. To bemore
precise, we obtain that ðF 0=F Þ þ ðG0=GÞ ¼ 2Ω0ðaÞ=ΩðaÞ
along with ðH0=H − 2H00=H0Þ ¼ 2½Ω00a2 þ 4Ω0aþ 2Ω�=
ðΩ0a2 þ 2aΩÞ.

B. Flare-out condition and traversability

One of the main ingredients of the wormholes con-
struction refers to the flare-out condition [21–24].
Physically speaking, the aforesaid condition is equivalent
to have a minimal surface represented by the wormhole
throat which ensures that an observer can pass through.
Wormhole geometries such as the one described by Eq. (20)
admit different variants of throat definitions [23,24]. Let us
start by mentioning the simplest one. To do so, we consider
a local patch on Σ≃ℜ × Στ given by (τ, yi) where i ¼ θ, ϕ
such that the induced metric on Σ can be recast as hab ¼
diagð−1;HðaÞ;HðaÞ sin2 θÞ and the line element is given
by Eq. (20). In fact, we are going to discuss properties of
the spatial section Στ so we must employ the induced metric
on it, that is, γij ¼ diagðHðaÞ;HðaÞ sin2 θÞ. On the one
hand, a Morris-Thorne wormhole throat, at a given static
time, is a minimal surface in the static hypersurface, i.e.
locally minimizing area among surfaces in the hypersur-
face. In other words, a traversable wormhole throat should
be considered as a two dimensional surface where (i)-
δAðΣτÞ ¼ 0 and (ii)-δ2AðΣτÞ ≥ 0 are met [2]. On the other
hand, Hochberg and Visser introduced the idea that the
throat of a traversable wormhole should be considered as a
two dimensional surface Στ with one important property,
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namely, the “flaring-out” condition only expresses strict
minimality [22]. The former conditions can be guaranteed
when TrðKi

jÞ ¼ 0 and ∂nðTrðKi
jÞÞ ≤ 0, where ∂n stands

for the directional derivative along the normal.
Nevertheless, the null trace requisite does not hold for
thin-shell wormholes [24]. As it was pointed by H.
Mazharimousavi and M. Halilsoy the notion of thin-shell
wormhole with matter located at its throat leads to
TrðKi

jÞ ¼ 2Kθ
θ ¼ −σ ≠ 0 [24]. One way to generalize

the notion of a wormhole’s throat is by retaining the idea of
minimal surface (∂nðTrðKi

jÞÞ ≤ 0) and admit the possibil-
ity of having TrðKi

jÞ < 0 or TrðKi
jÞ > 0 [24]. Let us

illustrate what happens with our model in the case of a static
thin-shell wormhole, namely _a ¼ ä ¼ 0 and therefore
l ¼ 1. The trace condition yields

TrðKi
jÞ ¼

2H0ðaÞ
HðaÞ ffiffiffiffiffiffiffiffiffiffi

GðaÞp : ð29Þ

Hence, the sign of (29) is determined by the sign of H0ðaÞ
provided that H is positive definite. Let us examine the
condition (29) for acoustic wormholes which are topologi-
cally equivalent to Ads/dS at spatial infinity. In the Ads
branch, the original manifold only has one horizon which is
located at rþ ¼ L by taking r0 ¼ 2L and L ¼ 1 without
loss of generality. We obtain that TrðKi

jÞ > 0 for large and
small wormhole radii. We notice that such configurations
can be relativistic or non-relativistic ones provided that the
trace condition remains positive for ξ ∈ ð0; 1Þ (see Fig. 2).

It should be stressed that the relativistic nature or not of the
acoustic wormholes is encoded in the allowed values taken
by ξ. In the case of dS acoustic wormholes we find a similar
situation regarding the sign of the trace condition. For L ¼
1 and r0 ¼ 1=4, the original manifold has an inner horizon
and the cosmological horizon placed at r− ≃ 0.26 and
rþ ≃ 0.83, respectively. When the wormhole radius a ∈
ðr−; rþÞ and ξ ∈ ð0; 1Þ, we arrive at the condition
TrðKijÞ > 0, which is equivalent to state that the static
configurations are supported by negative energy density.
When the original manifold has a double horizon at r� ¼
1=

ffiffiffi
3

p
in the case of L ¼ 1 and r0 ¼ 2=3

ffiffiffi
3

p
, the trace

condition cannot be employed to characterize the travers-
ability of the configuration; the main reason is that the
factor

ffiffiffiffiffiffiffiffiffiffi
GðaÞp

is ill definite because GðaÞ < 0 in the
aforesaid case. The same happens for the case of a
geometry without horizons, corresponding to a situation
in which r0 ¼ L=2 for L ¼ 1. Nevertheless, we can apply
less restrictive flare-out conditions which only require the
positivity of H0ðaÞ. To show so, we must link the previous
results with the applicability of standard flare-out condi-
tion, and therefore we must calculate the area of the surface
Στ, thus AðΣτÞ ¼ 4πHðaÞ. It is straightforward to show
that a minimal surface is obtained whenA0ðΣτÞ > 0, which
also implies the positivity ofH0ðaÞ. In fact, it can be shown
that this provides a bound on the way the conformal factor
ΩðaÞ can grow:

∂ ln½a2ΩðaÞ�
∂a > 0: ð30Þ

Further, one can consider another less restrictive flare-out
condition [23] by using the perimeter of Σ given by P ¼
2π

ffiffiffiffiffiffiffiffiffiffiffi
HðaÞp

as a useful measure of the openness of the
wormhole’s throat. It is clear that the perimeter must be an
increasing function of the wormhole’s radius, so one must
ensure that ∂a lnP ¼ ∂a½lnH1=2� > 0. The minimality
areal [A0ðΣτÞ > 0] along with the perimeter condition
[P0ðΣτÞ > 0] are both satisfied provided the inequality
H0ðaÞ > 0 holds for the Ads/dS acoustic wormholes.

C. Energy conditions

There are different, but related energy conditions which
can be imposed on the stress-energy tensor [3]. Matter
satisfying these conditions is denoted ordinary matter, while
matter violating these conditions is called exotic matter.
The weak energy condition (WEC) states that for any

timelike vector uA it must be TABuAuB ≥ 0, namely it states
that for any observer the measured energy density is non-
negative. The WEC also implies, by continuity, the null
energy condition (NEC), which means that for any null
vector kA it must be TABkAkB ≥ 0 [3]. In an orthonormal
basis the WEC reads ρ ≥ 0, ρþ Pl ≥ 0∀l while the NEC
takes the form ρþ Pl ≥ 0∀l. Besides, the strong energy
condition states that ρþ Pl ≥ 0∀l, and ρþP

lPl ≥ 0. If

FIG. 2. It is plotted the fulfillment of the flare-out condition
TrðKabÞ > 0 (shaded region) in terms of the wormhole radius
when ξ ∈ ð0; 1Þ. This case corresponds to acoustic wormholes
which are asymptotically Ads.
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the strong energy condition holds, also the null energy
condition holds. However, the weak energy condition does
not follow from the strong energy condition.
Let us consider the energy-stress tensor for the matter

located at wormhole throat (24). The WEC condition would
read σ > 0, σ þ Pθ > 0 and σ þ Pϕ > 0, while NEC only
requires σ þ Pθ > 0 and σ þ Pϕ > 0. Besides, SEC is
guaranteed when σ þ Pθ > 0, σ þ Pϕ > 0 and σ þ Pθþ
Pϕ > 0. In the case of spherically symmetric thin-shell
wormholes we have the surface energy density is σ < 0
and lateral pressures coincide Pθ ¼ Pϕ. The former fact
leads to the violation of the WEC. The reason for such result
is that the flare-out condition must hold; the positivity of the
trace condition (29) in turn implies the negativity of σðaÞ. On
the other hand, the sign of σ þ Pθ or σ þ 2Pθ, where Pθ the
transverse pressure is not fixed, but it depends on the values
of the parameters of the system. Then, NEC and SEC are not
necessarily violated. We should emphasize that we are not
discussing the energy conditions associated with the energy-
momentum for two exterior regions to the shell (r > a),
which involve a positive/negative cosmological constant.
Such case was examined by Dias and Lemos [25] within the
framework of d-dimensional general relativity with a cos-
mological constant for charged thin-shell wormholes.
We must explore whether NEC or SEC are violated or

not for static thin-shell acoustic wormholes. To do so, we
evaluate the energy density (25) and the pressure (26) for
_a ¼ ä ¼ 0. Then NEC can be recast as

F 0ðaÞ
F ðaÞ ≥

H0ðaÞ
HðaÞ ; ð31Þ

while the SEC requires the addition of the following
constraint:

∂ lnF ðaÞ
∂a ≥ 0: ð32Þ

We begin by considering the case of Ads acoustic worm-
holes with a ∈ ðrþ ¼ 1;∞Þ. We obtain that σ þ Pθ

remains positive for small radius, namely a ∈ ð1; 3Þ, and
takes negative values for a > 3 [see Fig. 3]. On the other
hand, the constraint σ þ 2Pθ remains positive for all radius
[see Fig. 3]. The previous finding are valid for relativistic
acoustic wormhole (ξ ¼ 0.01) and nonrelativistic one
(ξ ¼ 0.9). Therefore, we can infer that NEC and SEC
are satisfied for small radii and they are violated in the case
of large radii, regardless of the relativistic nature of the
acoustic wormholes. For the acoustic dS wormholes, we
obtain that σ þ 2Pθ remains positive for a ∈ ð0.26; 0.37Þ
and takes negative values in the interval a ∈ ð0.37; 0.82Þ
while the condition σ þ 2Pθ reaches positive values for a ∈
ð0.26; 0.45Þ and takes negative values in the interval
a ∈ ð0.45; 0.82Þ. Hence, NEC and SEC are satisfied
when a ∈ ð0.26; 0.37Þ but they are violated elsewhere
[see Fig. 4].

D. Test particles around the acoustic wormhole

Another appealing attempt to characterize the acoustic
wormhole geometries is by looking at the behavior of test
particle around them [25]. To do so, we must explore if the
test particles are attracted or repelled by static wormhole.
In that case, the four velocity is uA ¼ ð½ ffiffiffiffiffiffiffiffiffi

GðrÞp �−1; 0; 0; 0Þ
then the four-acceleration takes the form aA ¼ uB∇BuA ¼
ΓA
ηη½uη�2, being the only nonzero contribution Γr

ηη ¼
F 0=ð2GÞ. Then, a test particle can remain at rest as long
as it keeps a proper acceleration with radial component
given by

ar ¼ F 0ðrÞ
2F ðrÞGðrÞ : ð33Þ

Equation (33) tells us that acoustic Ads wormholes exhibits
an attractive character for all radiuswhile the case of acoustic

FIG. 3. Upper panel: It is plotted the condition σ þ Pθ in terms
of the wormhole’s radius for several values of ξ ∈ ð0; 1Þ. Lower
panel: It is shown the condition σ þ 2Pθ in terms of the worm-
hole’s radius for several values of ξ ∈ ð0; 1Þ. These cases
correspond to acoustic wormholes which are asymptotically Ads.
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dS wormholes the story is not so simple. For the latter
case, we obtain that it shows an attractive character for
small radii with a ∈ ð0.26; 0.42Þ but it becomes repulsive
in the complementary interval, namely a ∈ ð0.42; 0.82Þ
[see Fig. 5].

IV. WORMHOLE’S STABILITY

A central aspect of any solution of the equations of
gravitation is its mechanical stability. The stability of worm-
holes has been thoroughly studied for the case of small
perturbations preserving the original symmetry of the con-
figurations. In particular, Poisson and Visser [26] developed
a straightforward approach for analyzing this aspect for thin-
shell wormholes; that is, those which are mathematically
constructed by cutting and pasting two manifolds to obtain a

new manifold [27,28]. In these wormholes the associated
supporting matter is located on a shell placed at the joining
surface; so the theoretical tools for treating them is the
Darmois-Israel formalism, which leads to the Lanczos
equations [9,29]. The solution of the Lanczos equations
gives the dynamical evolution of the wormhole once an
equation of state for thematter on the shell is provided. Such a
procedure has been subsequently followed to study the
stability of more general spherically symmetric configura-
tions (see, for example, Refs. [30–38]). Moreover, the
junction conditions were also used to construct plane
symmetric thin-shell wormholes with cosmological constant
[39,40].
In general to obtain the dynamical picture of the worm-

holes can be a very complicated endeavor. As can be seen
from Eqs. (25)–(26) the nonlinear character of these
expressions makes the idea of obtaining exact solutions
very hard to implement. However, we can follow another

FIG. 4. Upper panel: The condition σ þ Pθ in terms of the
wormhole’s radius for several values of ξ ∈ ð0; 1Þ. Lower panel:
The condition σ þ 2Pθ in terms of the wormhole’s radius for
several values of ξ ∈ ð0; 1Þ. These cases are associated with
acoustic wormholes which are asymptotically dS.

FIG. 5. Upper panel: Acceleration of the Ads wormhole in
terms of its radius for ξ ∈ ð0; 1Þ. Lower panel: Acceleration of the
dS wormhole in terms of its radius for ξ ∈ ð0; 1Þ.
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route and study the stability of static solutions by linearizing
the field equation. A physically interesting wormhole geom-
etry should last enough so that its traversability makes sense.
Thus the stability of a given wormhole configuration
becomes a central aspect of its study. Here we shall analyze
the stability under small perturbations preserving the spheri-
cal symmetry of the configuration; for this we shall proceed
as [26]. Aswe said, the dynamical evolution is determined by
Eqs. (25) and (26), or by any of them and the energy-
momentum conservation, and to complete the system we
must add an equation of state that relates p with σ.
Our first move to address the stability issue is to recast

Eq. (25) in such away that it allows us to get _a ¼ Xða; σðaÞÞ.
Then, by squaring appropriately the energy density (25), we
obtain the equivalent Hamiltonian constraint of a particle
with generalized coordinate a and conjugate momentum
pa¼ _a in one dimension, namely H¼p2

aþVða;σðaÞÞ≡0.
Such constraint can be written as

_a2 ¼ −V½a; σ̄�; ð34Þ
with σ̄ ¼ 4πσ. FromEq. (34)we canwrite down the potential
energy

V½a; σ̄� ¼ 1

GðaÞ − σ̄2
�
H
H0

�
2

: ð35Þ

From the master equation (35) we get a single dynamical
equation which completely determines the motion of the
wormhole throat after the energy density is selected. To
proceed further we need to make a Taylor expansion of the
potential V up to second order around the static solution:

VðaÞ ¼ Vða0Þ þ V 0ða0Þða − a0Þ

þ 1

2
V 00ða0Þða − a0Þ2 þO½ða − a0Þ3�: ð36Þ

Using (35) we get that the first derivative of V is

V 0½a0; σ̄ða0Þ� ¼ −
G0

G2
− 2σ̄

H
H0

�
σ̄0

H
H0 þ σ̄

�
1 −

HH00

H02

��
;

ð37Þ
while the second derivative of the potential energy can be
written as a superposition of four different terms, say
V 00 ¼ P

5
I¼1 V

00
0Iða0Þ. All these terms are evaluated at the

static configurations. Such coefficients are given below:

V00
01 ¼ −

G00

G2
þ G02

G3
; ð38Þ

V 00
02 ¼ 8σ̄2

H
H0

�
1 −

HH00

H02

��
H0

H

�
1þ P̄

σ̄

�
þ δQ̄

2

�
; ð39Þ

V 00
03 ¼ −2σ̄2

�
1 −

H2H000

H03 −
3HH00

H02

�
1 −

3HH00

H02

��
; ð40Þ

V 00
04 ¼ −2σ̄2

H2

H02

�
H0

H

�
1þ P̄

σ̄

�
þ δQ̄

2

�
2

; ð41Þ

V 00
05¼−2σ̄2

H2

H02

�
H0

H

�
1þ P̄

σ̄

�
þδQ̄

2

��
H0

H
ð1þc2aÞþ

δQ̄
2

�

þ2σ̄2
H2

H02

��
H00

H
−
H02

H2

��
1þ P̄

σ̄

�
þδQ̄0

2

�
; ð42Þ

where we have used the conservation equation (28) to
express the second derivative σ̄00 in terms of σ̄0 and σ̄. We
also defined the adiabatic squared speed sound as
c2a ¼ P̄0=σ̄0, being P̄ ¼ 4πPθ. Further, we defined the
function δQ̄ ¼ ðF 0=F þ G0=GþH0=H − 2H00=H0Þ. To
close the system of equations we postulated that the matter
located at the wormhole’s throat is described by a linear
equation of state which can be parametrized as

FIG. 6. Upper panel:Stability regions in the a − c2a plane for dS
wormhole with ξ ¼ 0.01 in the large radii case. Lower panel:
Stability regions in the a − c2a plane for dS wormhole with ξ ¼
0.01 in the small radii case.
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P̄ ¼ P̄0 þ c2aðσ̄ − σ̄0Þ. It should be stressed that c2a is a
parameter entering the equations of state which is restricted
to the interval (0,1) for normal matter.
It is important to note that wormholes are stable if and

only if V 00ða0Þ > 0, while for V 00ða0Þ < 0 perturbations can
grow, at least until the nonlinear regime is reached. In order
to develop a better understanding of the stability for
acoustic wormholes we are going to split our analysis into
parts according to the spatial topology of them; one is
associated with Ads wormholes while the other refers to dS
wormholes. This approach will provide us with some
interesting insights on how the topology of acoustic
wormhole can affect the linear stability of them, and
therefore it will be useful for later comparison.
We begin by considering the case of acoustic dS

wormholes. For L ¼ 1 and r0 ¼ 1=4 the wormhole has

finite radius a0 ∈ ð0.26; 0.82Þ. Figure 6 shows that there
are two small patches in the a0 − c2s plane where in each
patch is possible to find static configurations which remain
stable under radial perturbations. For ξ ¼ 0.01 (ultrarela-
tivistic BEC), wormholes are stable as along as their radii
belong to the interval ð0.26; 0.27Þ∪ð0.66; 0.71Þ, otherwise
they are unstable ones. Interestingly enough, there is a nice
correlation between the stability zones and the nonviolation
of NEC and SEC. As a result, we obtain that stable dS
wormholes with small radii a0 ∈ ð0.26; 0.27Þ are accom-
modated as static configurations which do not violate NEC
and SEC.We also confirm our previous analysis by plotting
the behavior of V 00ða0Þ for different values of ξ but fixing
the adiabatic speed sound parameter as ca ¼

ffiffiffiffiffiffiffiffiffi
0.01

p
[see

Fig. 7]. As it can be seen only wormholes with

FIG. 7. Upper panel: Second derivative of the energy potential
in terms of the dS wormhole radius for c2a ¼ 0.01 and ξ ∈ ð0; 1Þ.
Lower panel: Second derivative of the energy potential in terms of
the dS wormhole radius for c2a ¼ 0.01 and ξ ∈ ð0; 1Þ; this shows
that wormholes with very small radii can be stable.

FIG. 8. Upper panel: Stability regions in the a − c2a plane for
Ads wormhole with ξ ¼ 0.01. Lower panel: Second derivative of
the energy potential in terms of the Ads wormhole radius for
c2a ¼ 0.01 and ξ ∈ ð0; 1Þ; this shows that wormholes with very
small radii are allowed to be stable.
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ultrarelativistic BEC parameter ξ ¼ 0.01 are stable at
large radii. Numerical analysis shows up that only are
allowed wormholes with very small radius, namely
a0 ∈ ð0.26; 0.27Þ, when the BEC parameter approaches
to nonrelativistic values, for instance ξ ¼ 0.9.
We carry on our analysis by exploring the case of

acoustic Ads wormholes. For practical purposes we fix L ¼
1 and r0 ¼ 2, so the original manifold exhibits an horizon
at rþ ¼ 1. Figure 8 shows that only wormholes with small
radii are allowed to be stable for ξ ¼ 0.01. The stability
zone is a0 × c2a ¼ ð1.21; 1.26Þ × ð0; 1Þ. Further, higher
values of the BEC parameter ξ does not change such
findings. Our conclusion is confirmed by plotting the
V 00ða0Þ for different values of ξ. As a result, we find that
all acoustic wormholes asymptotically Ads are unstable
under radial perturbation regardless the value taken by the
BEC parameter. Once again, the correlation between
stability regions and the violation of NEC and SEC
conditions is established. Stable Ads wormhole satisfy
both NEC and SEC, whereas unstable Ads wormhole with
large radii violate both energy conditions.

V. SUMMARY

We have considered the construction of acoustic thin-
shell wormholes asymptotically Ads/dS where the original
manifold emerges within the context of relativistic Bose-
Einstein condensates. Our previous analysis was possible
provided it has been shown that black holes metric are
connected with acoustic effective geometry associated with
BEC up to a conformal factor.
We have shown that dS/Ads acoustic wormholes

both satisfied the (trace) flare-out condition, namely
TrðKijÞ > 0, which is equivalent to state that the static
configurations are supported by negative energy density.
Nevertheless, we have shown that if the aforesaid condition
cannot be applied the traversability of these configurations
can be guaranteed provided the areal condition A0ðΣτÞ > 0
along with the perimeter condition P0ðΣτÞ > 0 hold. To
further characterize these wormholes, we explored the
behavior of a test particle near the wormhole’s throat.

Interestingly enough, we found that acoustic Ads worm-
holes exhibit an attractive character for all radius while
acoustic dS wormholes only are attractive as long as their
radii remain very small otherwise they repel the test article.
One of the main reasons to explore the existence of thin-

shell acoustic wormholes is that one would be interested in
those which require a minimal amount of exotic matter. At
least, one could be interested in studying the possibility of
having configurations which do not necessarily violate all
the energy conditions. For the latter reason, we have
explored the violation or not of the energy conditions
and their connections with the stability of acoustic worm-
holes. To be more precise, we have found that static dS
wormholes can remain stable under radial perturbations as
long as they have small radii. For instance, we took ξ ¼
0.01 (ultra-relativistic BEC parameter) and obtained stable
wormholes with radii ∈ ð0.26; 0.27Þ∪ð0.66; 0.71Þ, other-
wise they are unstable ones. Interestingly enough, those
stable dS wormholes with small radii a0 ∈ ð0.26; 0.27Þ do
not violate NEC and SEC. In addition, we have explored
the stability of acoustic Ads wormholes. We noted that
wormholes with small radii are allowed to be stable for
ultrarelativistic BEC parameter (ξ ¼ 0.01). Nevertheless,
we arrived at the conclusion that moving toward the
nonrelativistic regime (with a higher BEC parameter) does
not change such findings. Furthermore, we showed that
acoustic Ads wormholes with large radius are unstable
under radial perturbation regardless the value taken by the
BEC parameter. In addition, we pointed out that stable Ads
wormhole satisfy both NEC and SEC but unstable Ads
wormhole with large radii violate both energy conditions.
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