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Abstract. This paper discusses the effects of the mass and angular momentum of massive vector and
scalar particles on the Hawking temperature manifested under the effects of the generalized uncertainty
principle (GUP). In particular, we calculate the Hawking temperature of a black hole in a warped DGP
gravity model in the framework of the quantum tunneling method. We use the modified Proca and Klein-
Gordon equations previously determined from the GUP Lagrangian in the spacetime background of a
warped Dvali-Gabadadze-Porrati (DGP) metric, with the help of Hamilton-Jacobi (HJ) and semiclassical
(WKB) approximation methods. We find that as a special case of a warped DGP black hole solution, the
Hawking temperature of a Schwarzschild-de Sitter (SdS) black hole can be determined. Furthermore, the
Hawking temperature is influenced by the mass and the angular momentum of vector and scalar particles
and depends on which of those types of particles is being emitted by the black hole. We conclude that the
nonthermal nature of the Hawking spectrum leads to Planck-scale nonthermal correlations, shedding light
on the information paradox in black hole evaporation.

1 Introduction

Recently, quantum gravity effects have been widely studied in the context of high- and low-energy scales [1–12].
One interesting scenario concerns the study of the possible effects of the generalized uncertainty principle (GUP)
on Hawking radiation (HR); the effects seem to have interesting implications for the final stage of the black hole
evaporation process. In the standard narrative, due to HR, a black hole is thought to lose mass and, eventually, after
a very long period of time, to evaporate completely [13–15]. However, this scenario may not correctly reflect the final
stage of a black hole, since the effects of the GUP modify the Hawking temperature; hence, the black hole may not
evaporate completely and may leave remnants [16–26].

The amount of HR can be measured by various methods for different types of particles from higher- and lower-
dimensional black holes and wormholes [27–54]. In addition to the mass, charge, and angular momentum of a black
hole, the Hawking temperature is shown to depend on the nature of the particles emitted by the black hole, when the
effects of the GUP are taken into account. In [55] and [56], for the cases of scalar and Dirac particles, the corrected
Hawking temperature was shown to depend on the particles mass and angular momentum. Later, in ref. [57], a similar
result was found for the corrected Hawking temperature associated with the tunneling of massive vector particles and
related to the mass and angular momentum of particles emitted by the black hole. This is quite an interesting result,
since it could be related to the information loss paradox.

On the other hand, it is suggested that living on a brane embedded in extra-dimensional space causes the weakness
of gravity [58,59]. By compactifying extra-dimensional space, true four-dimensional (4D) gravity may be produced at
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large distances because of the finite volume of the extra-dimensional space. Moreover, one can produce the same effect
by forcing extra-dimensional space to warp [60], if the extra space has a finite size. Then, one modifies 4D gravity
with flat, infinitely sized extra dimensions to illuminate the problems of supersymmetry breakage and the cosmological
constant [61]. In Dvali-Gabadadze-Porrati (DGP) gravity, a mechanism is proposed by which 4D Newtonian gravity
is produced on a 3-brane embedded in 5D Minkowski space [61]. It is noted that in the DGP model, the potential
becomes 4D at short distances but behaves like 5D at large distances [61].

Theories of gravity in more than four dimensions have recently attracted much interest, for example, the black
hole solution recently found in a warped DGP brane model [62]. Inspired by this work, we aim to extend the quan-
tum tunneling method to massive vector and scalar particles under the influence of the GUP effects from a warped
DGP brane-model black hole (WDGPBBH). We shall consider the GUP-modified Proca and Klein-Gordon equations
(published recently in the literature) in the spacetime of a WDGPBBH.

This paper is organized as follows. In sect. 2, we review the warped DGP brane-model solution published re-
cently [62]. In sect. 3, we review the GUP-corrected Lagrangian of massive vector fields and solve the GUP-modified
Proca equation [57] to find the corrected Hawking temperature of the warped DGP black hole. In sect. 4, we solve the
GUP-modified Klein-Gordon equation and determine the corrected Hawking temperature. In sect. 5, we discuss our
results.

2 Black holes in DGP gravity

We consider a 5D bulk spacetime with a single 4D brane, on which gravity is confined, and derive the effective 4D
gravitational equations. First, one locates the 4D brane (M, gμν) at a hypersurface (B(XA) = 0) in the 5D bulk
spacetime (M, (5)gAB). It is noted that the coordinates are XA (A = 0, 1, 2, 3, 5). The action of the brane world is
given as follows:

S = Sbulk + Sbrane, (1)

where

Sbulk =
∫
M

d5X
√

−(5)g

[
1

2κ2
5

(5)R + (5)Lm

]
(2)

and

Sbrane =
∫

M

d4x
√
−g

[
1
κ2

5

K± + Lbrane(gαβ , ψ)
]

. (3)

Note that κ2
5 is the 5D gravitational constant. Moreover (5)R and (5)Lm stand for the 5D scalar curvature and the

matter in the bulk, respectively. It is defined the induced 4D coordinates on the brane as xμ (μ = 0, 1, 2, 3), where the
trace of the trace of extrinsic curvature is K±. On the other hand, the effective 4D Lagrangian is Lbrane(gαβ , ψ) with
a generic functional of the brane metric gαβ and matter fields ψ.

The 5D Einstein equations in the bulk are derived from the action as follows:

(5)GAB = κ2
5

[
(5)TAB + τAB δ(B)

]
, (4)

where τμν is the “effective” energy-momentum tensor localized on the brane, (5)TAB is the energy-momentum tensor
of bulk matter fields and δ(B) is the localization of brane contributions:

(5)TAB ≡ −2
δ(5)Lm

δ(5)gAB
+ (5)gAB

(5)Lm, (5)

τμν ≡ −2
δLbrane

δgμν
+ gμνLbrane. (6)

As the field equations are solved and the black hole solution is derived in the 4D brane world [62], the black hole
solution on the brane is found by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (7)

with f(r) = 1 − rM

r − r2

r2
c
. It is noted that it reduces to the asymptotically de Sitter space for rc =

√
3
Λ , r = rc

2 and
rM = 0. Note that it also reduces to a Schwarzchild black hole for rc → ∞ and r = rM = 2M .
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3 Massive vector particles tunneling from WDGPBBH by the GUP

In this section, firstly, we study the massive vector particles tunneling from WDGPBBH by the GUP using the method
in ref. [57]. Starting from the GUP-corrected Lagrangian of massive vector field Ψμ given by [57],

LGUP = −1
2

(DμΨν −DνΨμ) (DμΨν −DνΨμ) − m2
W

�2
ΨμΨμ, (8)

the modified field equation for massive bosons, in the case of uncharged bosons W , is given as follows [57]:

∂μ

(√
−gΨμν

)
−
√
−g

m2
W

�2
Ψν + β�

2∂0∂0∂0

(√
−gg00Ψ0ν

)
− β�

2∂i∂i∂i

(√
−ggiiΨ iν

)
= 0, (9)

where the GUP-modified antisymmetric tensor Ψμν is given as Ψμν = (1 − β�
2∂2

μ) ∂μΨν − (1 − β�
2∂2

ν) ∂νΨμ. We note
that in the case of the modified tensor Ψiμ, the Latin indices refer to spatial components, i.e., i = 1, 2, 3 while, in the
case of Ψ0μ, “0” denotes the time coordinate. Furthermore, β can be written in terms of the minimal length (Mf ), as
β = 1/(3M2

f ). On the other hand, m is the mass of the vector particle. The metric of the spherically symmetric static
spacetime WDGPBBH is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (10)

where

f(r) = 1 − rM

r
− r2

r2
c

. (11)

According to the WKB approximation, the vector field Ψμ has the form of

Ψμ = cμ(t, r, θ, φ) exp
[

i

�
I(t, r, θ, φ)

]
, (12)

where I is defined as
I(t, r, θ, φ) = I0(t, r, θ, φ) + �I1(t, r, θ, φ) + �

2I2(t, r, θ, φ) + . . . . (13)

By substituting eqs. (12), (13), and the WDGPBBH metric (10) into eq. (9), and keeping only the lowest order in �,
we obtain the equations for the coefficients cμ:

f(r)
[
c0(∂rI0)2A2

1 − c1(∂rI0)(∂tI0)A1A0

]
+

1
r2

[
c0(∂θI0)2A2

2 − c2(∂θI0)(∂tI0)A2A0

]

+
1

r2 sin2 θ

[
c0(∂φI0)2A2

3 − c3(∂φI0)(∂tI0)A3A0

]
+ c0m

2
W = 0, (14)

− 1
f(r)

[
c1(∂tI0)2A2

0 − c0(∂tI0)(∂rI0)A0A1

]
+

1
r2

[
c1(∂θI0)2A2

2 − c2(∂θI0)(∂rI0)A2A1

]

+
1

r2 sin2 θ

[
c1(∂φI0)2A2

3 − c3(∂φI0)(∂rI0)A3A1

]
+ c1m

2
W = 0, (15)

− 1
f(r)

[
c2(∂tI0)2A2

0 − c0(∂tI0)(∂θI0)A0A2

]
+ f(r)

[
c2(∂rI0)2A2

1 − c1(∂rI0)(∂θI0)A1A2

]

+
1

r2 sin2 θ

[
c2(∂φI0)2A2

3 − c3(∂φI0)(∂θI0)A3A2

]
+ c2m

2
W = 0, (16)

− 1
f(r)

[
c3(∂tI0)2A2

0 − c0(∂tI0)(∂φI0)A0A3

]
+ f(r)

[
c3(∂rI0)2A2

1 − c1(∂rI0)(∂φI0)A1A3

]

+
1
r2

[
c3(∂θI0)2A2

2 − c2(∂θI0)(∂φI0)A2A3

]
+ c3m

2
W = 0, (17)

where the Aμs are defined as

A0 = 1 + β
1

f(r)
(∂tS0)2, A1 = 1 + βf(r)(∂rS0)2,

A2 = 1 + β
1
r2

(∂θS0)2, A3 = 1 + β
1

r2 sin2 θ
(∂φS0)2. (18)
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Considering the property of the WDGPBBH spacetime and the question that we aim to address, then following the
standard process, we separate the variables

I0 = −Et + R(r) + Θ(θ, φ), (19)

where E is the energy of the emitted vector particles. Then a matrix equation is obtained as

Σ(c0, c1, c2, c3)T = 0, (20)

where Σ is a 4×4 matrix, the elements of which are

Σ11 = f(r)R′2A2
1 +

Jθ
2

r2
A2

2 +
Jφ

2

r2 sin2 θ
A2

3 + m2
W , Σ12 = −f(r)R′(−E)A1A0,

Σ13 = −Jθ(−E)
r2

A2A0, Σ14 = −Jφ(−E)
r2 sin2 θ

A3A0,

Σ21 =
(−E)R′

f(r)
A0A1, Σ22 = − (−E)2

f(r)
A2

0 +
Jθ

2

r2
A2

2 +
J2

φ

r2 sin2 θ
A2

3 + m2
W ,

Σ23 = −JθR
′

r2
A2A1, Σ24 = − JφR′

r2 sin2 θ
A3A1,

Σ31 =
−EJθ

f(r)
A0A2, Σ32 = −f(r)R′JθA1A2,

Σ33 = − (−E)2

f(r)
A2

0 + f(r)R′2A2
1 +

J2
φ

r2 sin2 θ
A2

3 + m2
W , Σ34 = − JθJφ

r2 sin2 θ
A3A2,

Σ41 =
(−E)Jφ

f(r)
A0A3, Σ42 = −f(r)R′JφA1A3,

Σ43 = −JθJφ

r2
A2A3, Σ44 = − (−E)2

f(r)
A2

0 + f(r)R′2A2
1 +

J2
θ

r2
A2

2 + m2
W , (21)

where R′ = ∂rR, Jθ = ∂θΘ and Jφ = ∂φΘ.
Equation (20) has a nontrivial solution if the determinant of the matrix Σ equals zero. By neglecting the higher-

order terms of β and solving detΣ = 0, we obtain the solution to the derivative of the radial action

∂rR± = ±

√
− m2

f(r)
+

(E)2

f(r)2
−

J2
θ + J2

φ csc2 θ

f(r)r2

(
1 +

T1

T2
β

)
, (22)

where

T1 = −3f(r)m4r2 + 6m2r2(E)2 − 6f(r)m2(J2
θ + J2

φ csc2 θ) − 6f(r)J4
θ

r2

+ 6(E)2(J2
θ + J2

φ csc2 θ) −
7f(r)J2

θ J2
φ csc2 θ

r2
−

3f(r)J4
θ J2

φ csc2 θ

2m2r4

−
5f(r)J4

φ csc4 θ

r2
+

3f(r)J2
θ J4

φ csc4 θ

2m2r4
, (23)

T2 = −f(r)m2r2 + r2(E)2 − f(r)(J2
θ + J2

φ csc2 θ). (24)

Integrating eq. (22) around the pole at the outer horizon yields the solution of the radial action. The particle’s
tunneling rate is determined by the imaginary part of the action,

ImR±(r) = ± Im
∫

dr

√
− m2

f(r)
+

(E)2

f(r)2
−

J2
θ + J2

φ csc2 θ

f(r)r2

(
1 +

T1

T2
β

)
. (25)

In order to solve this integral we must write the metric (10) near the event horizon, thus following [63] and solving
r3 + 2Mr2

c − rr2
c = 0, one gets the black hole event horizon rh, and the cosmological horizon rcos, given by

rh =
2M√

3ξ
cos

π + ψ

3
, (26)

rcos =
2M√

3ξ
cos

π − ψ

3
, (27)
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where
ψ = cos−1

(
3
√

3ξ
)

, (28)

in which ξ = M2/r2
c and it belongs to the interval 0 < ξ < 1/27. Moreover, by expanding rh in terms of M in the

interval ξ < 1/27, gives (see, e.g., [63])

rh = 2M

(
1 +

4M2

r2
c

+ . . .

)
. (29)

Let us define Δ(r) = r2 − 2Mr − r4/r2
c , so that

Δ,r (rh) =
dΔ

dr

∣∣∣∣
rh

= 2
(

rh − M − 2r3
h

r2
c

)
. (30)

In other words, the metric (10) can be written as

ds2 = −Δ,r (rh)
rh

2
(r − rh)dt2 +

rh
2

Δ,r (rh)(r − rh)
dr2 + r2

hdθ2 + r2
h sin2 θ dφ2, (31)

in which rh is given by eq. (29). From the last metric, the following identification for f(rh) can be written:

f(rh) ≈ Δ,r (rh)
rh

2
(r − rh). (32)

Solving the integral (25), we find the following result for the radial part:

Im R±(r) = ±iπ
r2
h

Δ,r (rh)
(E) × (1 + βΞ) , (33)

where Ξ = 6m2 + 6
r2

h
(J2

θ + J2
φ csc2 θ).

It is quite clear that Ξ > 0. We note that R+ represents the radial function for the outgoing particles and R− is
for the ingoing particles. Thus, the tunneling rate of W bosons near the event horizon is

Γ =
Poutgoing

Pingoing
=

exp
[
− 2

�
(Im R+ + Im Θ)

]
exp

[
− 2

�
(Im R− + Im Θ)

] = exp
[
−4

�
Im R+

]

= exp
[
−4π

�

r2
h

Δ,r (rh)
(E) × (1 + βΞ)

]
. (34)

If we set � = 1, then the effective Hawking temperature is deduced as

Te−H =
Δ,r (rh)

4πr2
h(1 + βΞ)

= T0 (1 − βΞ) , (35)

where T0 = Δ,r (rh)

4πr2
h

is the original Hawking temperature of a warped DGP gravity black hole, which is similar to the
Schwarzschild-de Sitter (SdS) black hole [63]. Moreover, we recover the Hawking temperature for the Schwarzchild
black hole in the limit rc → ∞ and rh = 2M . From eq. (35), it can be inferred that the corrected temperature relies
on the quantum numbers (mass and angular momentum) of the emitted vector bosons. Moreover, the quantum effects
explicitly counteract the temperature increases during evaporation, which will cancel it out at some point. Naturally,
black hole remnants will be left.

4 Tunneling of massive scalar particles with GUP

We turn our attention now to the case of scalar particles under GUP effects by the WDGPBBH. We can easily
incorporate GUP effects into the massive Klein-Gordon equation by using the modified operators of position and
momentum. At leading order of β, this leads to the following equation [55]:

−(i�)2∂t∂tΦ =
[
(i�)2∂i∂i + m2

] [
1 − 2β

(
(i�)2∂i∂i + m2

)]
Φ. (36)
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Furthermore, after we choose the following ansatz for the scalar field Φ,

Φ(t, r, θ, φ) =
[

i

�
I(t, r, θ, φ)

]
, (37)

and consider only the lowest-order terms in �, the following equation can be found [55]:

1
f

(∂tI0)2 =
[(

f(∂rI0)2 +
1
r2

(∂θI0)2 +
1

r2 sin2 θ
(∂φI0)2

)
+ m2

]

×
[
1 − 2β

(
f(∂rI0)2 +

1
r2

(∂θI0)2 +
1

r2 sin2 θ
(∂φI0)2 + m2

)]
. (38)

Now let us carry out the separation of variables

I0 = −Et + R(r, θ) + jφ, (39)

then we can fix the angle θ = θ0, which leads to the following equation:

A (∂rR)4 + B (∂rR)2 + C = 0, (40)

where

A = −2βf2(r), (41)

B = f(r)
(

1 − 4βj2

r2 sin2 θ
− 4βm2

)
, (42)

C = m2 +
j2

r2 sin2 θ
− 2βj4

r4 sin4 θ
− 4βm2j2

r2 sin2 θ
− 2βm4 − E2

f(r)
. (43)

After some algebraic manipulation, eq. (40) yields the following integral for the radial part for the wave equation:

R(r) = ±
∫

√
E2 − f(r)

[
m2 + j2

r2 sin2 θ
− 2β

(
j4

r4 sin4 θ
+ 2m2j2

r2 sin2 θ
+ m4

)]

f(r)

[
1 + β

(
m2 +

E2

f(r)
+

j2

r2 sin2 θ

)]
dr. (44)

Solving this integral and neglecting higher-order terms in β, we find the following result near the black hole event
horizon:

Im R(rh) = ±iπ
r2
h E

Δ,r (rh)
(1 + βζ) , (45)

where

ζ(rh) =
m2

2
+

j2 csc2 θ

2 r2
h

. (46)

In this section we shall recover the Hawking temperature by considering the ambiguity of a factor two associated
with the solution known as a factor of two problem (see, for example, [64–72]). We should consider the canonical
invariance under canonical transformations given by

∮
prdr =

∫
p+

r dr −
∫

p−r dr, where p±r = ±∂rR, then one should
compute the spatial contribution to the tunneling as well as the temporal part contribution. The spatial contribution
reads

Γspatial ∝ exp
(
−1

�
Im

∮
prdr

)

= exp
[
−1

�
Im

(∫
p+

r dr −
∫

p−r dr

)]

= exp
[
−2π

�

r2
h E

Δ,r (rh)
(1 + βζ)

]
. (47)



Eur. Phys. J. Plus (2017) 132: 298 Page 7 of 8

The temporal part comes due to the connection of the interior region and the exterior region of the black hole.
Introducing t → t− iπ/(2κ), which suggests that Im(EΔtout,in) = −Eπ/(2κ), the total temporal contribution can be
calculated as

Γtemp. ∝ exp
[

1
�
(Im

(
EΔtout) + Im(EΔtin)

)]

= exp
[
−2π

�

r2
h E

Δ,r (rh)
(1 + βζ)

]
. (48)

The total tunneling rate at the horizon reads

Γ = exp
[

1
�

(
Im(EΔtout) + Im(EΔtin) − Im

∮
prdr

)]

= exp
[
−4π

�

r2
h E

Δ,r (rh)
(1 + βζ)

]
. (49)

If we set � = 1, and make use of the Boltzmann equation ΓB = exp(−E/TH), the effective Hawking temperature
is calculated as

Te−H =
Δ,r(rh)

4πr2
h(1 + βζ)

= T0 (1 − βζ) . (50)

Hence, we found that quantum-gravity–corrected Hawking temperature depends on the particle’s mass and angular
momentum associated with the scalar particles. Although this expression looks similar to the corrected Hawking
temperature for vector particles eq. (35), the relation to mass and angular momentum are not completely identical in
these results.

5 Discussion and conclusion

We have studied the effect of quantum gravity on the massive vector particles tunneling from a WDGPBBH and
derived their tunneling rates. We have pointed out that the radiation spectrum is not purely thermal and that the
GUP parameter β affects the tunneling rate. We have shown that the Hawking temperature of a warped DGP-gravity
black hole is identical to the SdS black hole temperature. We see that when quantum gravity effects are introduced,
the nature of the particles emitted by the black hole plays an important role. In other words, due to quantum gravity
effects, the remnants are more likely to form during the evaporation of vector particles than during the evaporation
of scalar particles, i.e., Ξ(rh) > ζ(rh). Finally, the difference in the Hawking temperature due to the type of particles
tunneled from the black hole could shed light on the information loss paradox in the near future.

This work was supported by the Chilean FONDECYT Grant No. 3170035 (AÖ).
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