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In this paper, we constructed an acoustic thin-shell wormhole (ATW) under neo-
Newtonian theory using the Darmois—Israel junction conditions. To determine the
stability of the ATW by applying the cut-and-paste method, we found the surface den-
sity and surface pressure of the ATW under neo-Newtonian hydrodynamics just after
obtaining an analog acoustic neo-Newtonian solution. We focused on the effects of the
neo-Newtonian parameters by performing stability analyses using different types of flu-
ids, such as a linear barotropic fluid (LBF), a Chaplygin fluid (CF), a logarithmic fluid
(LogF) and a polytropic fluid (PF). We showed that a fluid with negative energy is
required at the throat to keep the wormhole stable. The ATW can be stable if suitable
values of the neo-Newtonian parameters ¢, A and B are chosen.

Keywords: Thin-shell wormhole; Darmois—Israel formalism; canonical acoustic black
hole; stability; neo-Newtonian theory.
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1. Introduction

Einstein’s general theory of relativity is one of the towering achievements of
20th-century theoretical physics and has contributed many important ideas to this
field, such as the existence of black holes and compact objects. The theory of general
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relativity has also revealed the existence of objects called wormholes that connect
two different regions of the universe.»2 The pioneering work on wormholes was first
performed by Morris and Thorne,>* and then Visser had the brilliant idea of build-
ing thin-shell wormholes*® to minimize the negative matter in the throat. Since
Visser’s novel work, various thin-shell wormholes have been studied.® 4!

In this study, our aim is to construct acoustic thin-shell wormholes (ATWs) un-
der neo-Newtonian theory. For this purpose, we briefly study analog gravity, which
is a classical Newtonian treatment. The pressure is the main ingredient of general
relativity; indeed, the Newtonian approach is valid only for pressure-less fluids, so
that there is a neo-Newtonian generalization that can incorporate pressure effects.
Neo-Newtonian theory gives a first-order correction, as a result, that is approxi-
mately similar to the exact general relativity.2648 In the literature, there are many
applications of neo-Newtonian theory that provide interesting ways to study the
effects of analog gravity, such as the Aharonov—Bohm (AB) effect caused by the
acoustic geometry of a vortex in the fluid.#? McCrea in Ref. 42 deduced the neo-
Newtonian equations that were later refined in Ref. 43. Reference 44 obtained a
final expression for the equation of fluid that considers a perturbative treatment of
the neo-Newtonian equations (see also Refs. 46-48). Moreover, Refs. 46-48 stud-
ied acoustic black holes in the framework of neo-Newtonian hydrodynamics, and
Ref. 50 analyzed the effect of neo-Newtonian hydrodynamics on the super-resonance
phenomenon.

Analog gravity has led to a number of ideas such as an analog Schwarzschild
metric solution known as a canonical acoustic metric, the Painleve—Gullstrand

5L a rotating analog metric,>1®% and analog Anti-de-Sitter (AdS)

acoustic metric,
and de Sitter (dS) black hole solutions.?® In addition, following previous results,
Nandi et al.?® introduced the concept of acoustic traversable wormholes, using the
analogy of acoustic black holes. This technique was also used to investigate the
nature of curvature singularities to study the light ray trajectories in an optical
medium, which are equivalent to the sound trajectories in the acoustic analog. On
the other hand, we note a series of studies that were carried out to calculate the
quasi-normal modes, the super-radiance and the area spectrum.?42°

In this paper, we study an ATW under neo-Newtonian hydrodynamics, which
is a modification of the usual Newtonian theory that correctly incorporates the
effects of pressure. We concentrate on investigating the stability of the ATW using
different types of gases, such as a linear barotropic fluid (LBF),%:62 a Chaplygin
fluid (CF),53°66 a logarithmic fluid (LogF),!322 and a polytropic equation of state
for the fluid (PF).57 The paper is organized as follows. In Sec. 2, we review acoustic
black holes under neo-Newtonian theory. In Sec. 3, we construct the ATW and
show that an exotic fluid with negative energy is required at the throat to keep the
wormhole stable. In Sec. 4, we investigate the stability analyses using the CF, LogF

and PF. In Sec. 5, we discuss our results.
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2. Acoustic Black Holes in neo-Newtonian Theory

McCrea?? and Harrison??® developed the basic foundations of neo-Newtonian theory
in which the effects of pressure are considered contrary to the Newtonian theory.
In this section, we present a brief overview of neo-Newtonian hydrodynamics and
introduce the acoustic black hole metric obtained in Ref. 49. First, we present the
neo-Newtonian equations which are given by?2:43:45-49,60

Opi + V- (piv) +pV-v=0 (1)
and
. Vp
V4 (v V)v=——1 9
(v-vy =t e)

Note that p; is an initial fluid density, p is a pressure and v is a flow/fluid velocity.
Equations (1) and (2) are the continuity equation and the Euler equation modified
due to gravitational interaction, respectively. It is to be noted that the Newtonian
equations are recovered for a small pressure (p ~ 0).

We assume that the fluid is barotropic, i.e. p = p(p), inviscid and irrotational,
being the equation of state p = kp™, with k£ and n constants. We write the fluid
velocity as v = —V1), where v is the velocity potential. Now, we linearize Egs. (1)
and (2) by perturbating p, v and ¢ as follows:

p=po+epL+0(?), (3)
p" = lpo+ep1 + 0" = pi +nepp o4+, (4)
v = vy +evy +0(e?), (5)
W = o + et + 0(e?), (6)

where p is the fluid density. Then the wave equation becomes

1
—at{cszﬂo {aﬂﬁ + (2 + ;)VO : Vw} }
1
+V- {—652p0v0[<2 +;)3t¢+€V0'V¢] +P0V¢} =0, (7)
where ¢ =1+ Impg_l, that can be given as

(1 0up) = 0. (8)

Equation (8) can also be rewritten as the Klein-Gordon equation for a massless

scalar field in a curved (2 + 1)-dimensional spacetime as follows:46 48

Vi_fgauwfggwam) —o0, 9)
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where
1+ 1+
-1 _ 2§)’U1; ( 2€),Uy
Po 14
f,uu — /_gglLV — 672 _( 2§) Vg Cg _ gvg _gvmvy . (10)
S

1

—{ ;g)vy —CUvy € — U]

So in terms of the inverse of g"”, we obtain the effective (acoustic) metric given in
the form

2 2 (1+s) (1+9)
—(c2 —cv?) =, — vy
Po 14 —1)? —-1)2
Guv W —( QC) (o 1+ (§4cg) ’U; —%vay . (11)
s T Ui ) )
_(1-2F€)Uy _(€4—é) vev, 14 (c4—é) vg

The effective line element can be written as

ds” = m[_(ﬁ—wz)dtz — (L4 Q) (v - dr)dt
e
—1)2
+dr? + u(11y dx — v, dy)?|. (12)

4c2

S

In polar coordinates (v = v,7 + v¢¢3 and dr = dr # + r d¢ ¢), we have

ds> = p [—[cz —<(vZ +v3)]dt* — (1 + <) (v dr + ver do)dt + (dr® + r* d¢?)

(c—1)?
4c2

£}

+ (vp dr — vpr dqb)Z} , (13)
~ 2 5 ooy (s=12] 72 :

where p = /po [cs + (v + %)T] and neo-Newtonian parameter ¢ =1+

knpgfl. At this point, it is appropriate to apply the following coordinate trans-

formations:

(14+<)v,.dr

2(cf —qv7)

In this way, the line element can be written as

(14 <)vpvy dr

dr = dt
T (= c02)

dp =do + (14)

S+ w2+ 02) (52

2cs

ds® = pgq —[c2 — <(vi +v3)]dm* + dr? —vy(1 4 )rdrdy

(¢ —<v)

+ 72

2
122 | gy 15
+url 52 "0 (15)
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Now considering a static and position independent density, the flow/fluid velocity
is given by

. B

T+ 7¢ ) (16)

vV =

which is a solution obtained from the continuity equation and the velocity potential
is

W(r,p) = —Alnr — Bo. (17)

Thus, considering ¢, = 1 and substituting (16) and (17) into the metric (15), we
obtain the acoustic black hole in neo-Newtonian theory which is given by

2 2\ —1
ds®> = B [— (1 - :;)dTQ + (1+52) <1 — Z:g) dr?

_ 2Bﬁ3rd7 do + (1 + %)1"2 dwzl , (18)
where
—1/2 re(s—1 ?
51 = (1 + »32) ) ,32 = 73 <2> s (19)
2
=29 (Aso0) -

Note that 7. is a radius of ergo-region and rj, is an event horizon, i.e.

re = v/<s(A%2 + B2), rn = v/<|A]. (21)

Now, the metric (18) can be written in the form of

—f 0 _3753
Guw=51 0 (1+6)Q7 0 (22)
—Bfy 0 (1+2)
and the inverse of the g,,:
~(1+8)er 0 -2
g = 51(1‘; B2) 0 =2 o |, (23)
0 4
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where
r? r?
flzl_ﬁ7 Q:1_£7 (24)
(14 f2) Ba B*p3
,g:T 1+T—2 fi+ | (25)
Next, we consider a general symmetric metric form (18) for B = 0,
2 2, (1+52) Ba\ 2, 2
= - —_— 1+—= 2
ds® = 51 [ f(r)yds® + 7o dre+ 1+ 27 do” |, (26)
with

or we can write it in more compact form as follows:

ds? = —Fds®> + Gdr® + Hdp?, (29)
where F = \/p1f(r), G = % and H = \/m

3. Construction of Thin-Shell Wormbholes in
Neo-Newtonian Theory

In this section, we construct the thin-shell wormholes in neo-Newtonian theory
by using the metric (29). To construct the wormhole, we use the cut and paste
technique.?3”39* First, we choose two identical regions

M ={®E >4 0>}, (30)

in which a is chosen to be greater than the event horizon rj. If we now paste these
regular regions at the boundary hypersurface X(+) = {T(i) =a, a>rg}, then we
end up with a complete manifold M = M+*UM ~. In accordance with the Darmois—
Israel formalism the coordinates on M can be chosen as x® = (t,7,6,¢). On the
other hand, for the coordinates on the induced metric 3, we write £' = (7,6, ¢).
Finally, for the parametric equation on the induced metric 3, we write

X: R(r,7)=7r—a(r) =0. (31)

Note that in order to study the dynamics of the induced metric ¥, in the last
equation we let the throat radius of the wormhole to be time dependent by incor-
porating the proper time on the shell, i.e. @ = a(7). For the induced metric, we
have the spacetime on the shell

ds% = —d7r? + a(r)?*do?. (32)
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The junction conditions on ¥ reads

51y = — o (K]~ 015 ) (33)

Note that in the last equation S? ; = diag(—o, p) is the energy-momentum tensor

on the thin-shell, on the other hand, K and [Kj;], are defined as K = trace[K";]
and [KU] = K:g _Ki;’
the expression for the extrinsic curvature K*; as follows:

82 " « B
K& :—n(i>< v 0270 ) : (34)
)

respectively. Keeping this in mind, we can go on by writing

vo\ogog e ogt ol
The unit vectors nf,i), which are normal to M*) are chosen as
OR OR|"'? OR
) = 4| g —=— — . 35
" ( I 9w 0aP Ozt . (35)

ne = FaV/GF, (36)
n, = +\/G[1 + a2G] . (37)

Then, the extrinsic curvature is given by37:39 41

VG . o F g F
+ 2
KTT—:F2 : Cng{Qa—f—a [ + g}—i— g}, (38)

" 114 a2g
+
Koo = £\ — ¢

Using the definitions [K;;] = KZ"J' —K;; and K = tr[K;;] = [K,'], and the surface
stress—energy tensor S;; = diag(o, p) it follows the Lanczos equations on the shell:

(39)

—[Kij] + Kgij = 87Si; . (40)
Note that for a given radius a, the energy density on the shell is o, while the
pressure p = py. If we now combine the above results for the surface density3739 41
1 H [1+a3G
_ 1 a1
7 8T H g (41)

and the surface pressure
1 g .o F g
92 b
p { a—+a T + G

sV 1+a26 FG

+ F}. (42)

Since we are going to study the wormhole stability at a static configuration,
we need to set @ = 0, and d@ = 0. For the surface density in static configuration it
follows that:

1 H
81 HAG
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and similarly the surface pressure
1 F
P S G
It is obvious from Eq. (43) that the surface density is negative, i.e. o9 < 0, which
implies that the weak and dominant energy conditions are violated.

(44)

4. Stability Analysis

In this section, we are going to analyze the stability of the WH. Starting from the
energy conservation it follows that:37-39-41

; ox®
d dA acA|F G H 2H"
ar A = ]-"+Q+H_H’]’ 0

where A is the area of the wormhole throat. By replacing o(a), we can find the
equation of motion as follows:

a? = ~V(a) (47)
with the potential

1 ;AR
In order to investigate the stability of WH let us expand the potential V'(a)
around the static solution by writing

V" (ao)
2

V(a) = V(ag) + V'(ag)(a — ag) + (a— a0)2 +O(a — ao)3 . (49)

The second derivative of the potential is

_]:]:’g’ +2G{F? - FF"}
2F2G?

where we have introduced ¢’ = p’/o’.

The wormbhole is stable if and only if V" (ag) > 0. The equation of motion of
the throat, for a small perturbation becomes

a® + w(a —ap)® =0. (51)

Note that for the condition of V" (ag) > 0, WH is stable where the motion of

JH[2GH" — G'H| — 2GH

V" (ag) = 2G2H? )

+9 (50)

the throat is oscillatory with angular frequency w = 4/ % In this work, we are
going to use five different models for the fluid to explore the stability analysis; the
LBF,01:62 the CF,5366 the LogF!3:22 and finally PF.67

1750119-8
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Fig. 1. Here we plot the stability regions for the LBF as a function of w and radius of the
throat ag.

4.1. Stability analysis of ATW wvia the LBF

In our first case, we choose the LBF with the equation of state given by%!:62
Y =wo, (52)
it follows that
P (00) = w. (53)

Note that w is a constant parameter. In order to see more clearly the stability,
we show graphically the dependence of w in terms of ag for different values of the
parameter ¢, A and B in Fig. 1.

4.2. Stability analysis of ATW wvia the CF

According to the CF, we can model the fluid with the following equation of

state:63766

w—w(l—l)m (54)
g (o)

1750119-9
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Fig. 2. Here we plot the stability regions via the CF as a function of w and radius of the throat ag.

to find

Y'(00) =

—.
99

(55)

To see the stability regions, let us show graphically the dependence of w in terms
of ag for different values of the parameter ¢, A and B, given in Fig. 2.

4.3. Stability analysis of ATW wvia the LogF

Our next example is the LogF,'3?2 with the equation of state

) =wln (") +po,
o

then

Y'(00) =

w
0'0.

1750119-10
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Fig. 3. The stability regions as a function via the LogF of w and radius of the throat ag, in which
we have chosen three different values ¢, A and B.

For detailed information, we can show graphically the dependence of w in terms of
ag by choosing different values of the parameter ¢, A and B, in Fig. 3.

4.4. Stability analysis of ATW via PF

The equation of state for the fluid according to the PF can be written asf”6%
Y =wo?. (58)
It follows that
v'(00) =wyog " (59)

For detailed information, we plot w in terms of ag by choosing different values of
the parameter ¢, A and B, as shown in Fig. 4.

1750119-11
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Fig. 4. Here we plot the stability regions via the PF as a function of w and radius of the throat
ap for the parameter v = 1.1.

5. Conclusion

In this paper, we constructed a new ATW in the context of neo-Newtonian hy-
drodynamics, which is a modification of the usual Newtonian theory that correctly
incorporates the effects of pressure. We used a cut-and-paste technique to join to-
gether two regular regions, and then we computed the analog surface density and
surface pressure of the fluid. The stability analyses were carried out using an LBF,
CF, LogF and PF to show that the ATW can be stable if one chooses suitable
values of the parameters ¢, A, and B. In Fig. 1, after we chose specific values of ¢
as 1.5, 1.9, and 5 with A = B =1 and ¢ = 1.5 with A = 2.4 and B = 1, we showed
that the stability region (S) for the ATW is supported with the LBF. The sizes
of the stability regions decrease with increasing values of ¢ and A. In Fig. 2, we
chose values of ¢ as 1.5, 1.9, and 5 with A = B =1 and ¢ = 1.5 with A = 2.4 and
B =1 to show the effect of the CF on the ATW. Then, in Fig. 3, we chose the same
parameters again, but we used different fluids, such as the LogF, to show that the

1750119-12
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stability regions change with varying values of the parameters ¢ and A. Lastly, we
used the PF to show the stability regions, using the same parameters. Increasing
values of the neo-Newtonian parameter ¢ decrease the sizes of the stability regions.
Thus, we noted that the effects of pressure influence the stability of the model.
We showed that fluids with negative energy are required at the throat to keep the
wormhole stable, leading us to conclude that ¢ is the most critical factor for the
existence of a stable ATW.
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