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Traversable Wormholes in the Extended Teleparallel Theory
of Gravity with Matter Coupling

G. Mustafa,* Mushtaq Ahmad, Ali Övgün, M. Farasat Shamir, and Ibrar Hussain

This study explores the Gaussian and the Lorentzian distributed spherically symmetric wormhole solutions in the
f (𝝉 , T) gravity. The basic idea of the Gaussian and Lorentzian noncommutative geometries emerges as the physically
acceptable and substantial notion in quantum physics. This idea of the noncommutative geometries with both the
Gaussian and Lorentzian distributions becomes more striking when wormhole geometries in the modified theories of
gravity are discussed. Here we consider a linear model within f (𝝉 , T) gravity to investigate traversable wormholes. In
particular, we discuss the possible cases for the wormhole geometries using the Gaussian and the Lorentzian
noncommutative distributions to obtain the exact shape function for them. By incorporating the particular values of the
unknown parameters involved, we discuss different properties of the new wormhole geometries explored here. It is
noted that the involved matter violates the weak energy condition for both the cases of the noncommutative
geometries, whereas there is a possibility for a physically viable wormhole solution. By analyzing the equilibrium
condition, it is found that the acquired solutions are stable. Furthermore, we provide the embedded diagrams for
wormhole structures under Gaussian and Lorentzian noncommutative frameworks. Moreover, we present the critical
analysis on an anisotropic pressure under the Gaussian and the Lorentzian distributions.

1. Introduction

The crux of today’s cosmological paradigm is the wondering of the accelerated expanding universe and its potential causes, as affirmed
by various astrophysical tests, which have become a focal point of interest for the recent studies.[1–3] In this regard, the principal
endeavor was made by Einstein, presenting a notable ΛCDM model; yet notwithstanding its all excellence and achievement, this
model cannot be accepted as a final one.[4] Later on, various propositions have been introduced by the scientists that can be gathered
into two sorts of modified propositions: modified matter propositions and the modified curvature propositions. For instance, the
tachyon model, the Chaplygin gas, quintessence, and its various variants, quintom, phantom, and so on, are gotten by presenting
some additional terms in the matter content and thus are associates of the modified matter proposition cluster.[5–10,13–15] The other
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thought is to offer the modification of action of Einstein’s General Relativity (GR) by including some additional degrees of freedom.
One of the essential adjustments was the Lagrangian density due to the Einstein-Hilbert action incorporating the f (R) function, with
R being the Ricci scalar. This theory has been extensively used in the work done by Nojiri and Oditsov,[16] to study dark energy (DE)
and its subsequent expedient cosmic expansion. Additionally, the f (R) theory of gravity provides an integrated depiction of the initial
phases of the inflationary universe just as the late phases of the expanding universe.[17] Classical works comprising the modified
theory of f (R) gravity by Capozziello et al. can be found in the literature.[18–26] In a recent work physically viable wormhole solutions
in the f (R) theory of gravity with exponential model have been discussed by Mustafa et al.[30] Recently, Falco et al. have discussed the
wormhole solutions through the Poynting-Robertson effect.[27,28] Non-extremal spherically symmetric instanton wormhole solution
in string theory have been discussed by Bergshoeff et al.[31] Maldacena et al. have presented a study of some traversable wormhole
geometries in the background of AdS2 gravity.

[32] Some other notable models include Brans-Dicke gravity, f (𝜏) gravity, with 𝜏 being
a torsion, generalized Gauss-Bonnet theory of gravity with its further general modifications as the f (G) gravity, f (R,G) gravity, and
f (𝜏, 𝜏G)theory, etc.

[33–42] One more critical modification of the Einstein gravity to be specific f (R, T) gravity and was anticipated by
Harko et al.[43] right around five years prior. The structure of the bivariate function f (R, T), incorporates the connection of the Ricci
scalar R and T , the trace of the energy-momentum tensor.
Nevertheless, all recently referenced fruitful modified gravity theories which depend on a rudimentary element of metric tensor guv,

another proposition option alternative to Einstein gravity exists, which is recognized as the teleparallel gravity. Proposed by Einstein
himself, this theory is equivalent to GR, where the tetrad space is exploited as essential physical variable.[44] In this continuance,
another intriguing modified gravity is acquired by supplanting the torsion scalar 𝜏 with a subjective generic function, known as f (𝜏)
gravity.[45] This theoretical approach is considered as quite possibly the most fascinating option as a substitute to GR in light of the
straightforwardness of its subsequent field condition. Ahmed et al.,[46] examined the accumulation cycle of a spherically symmetric
black hole under teleparallel f (𝜏) gravity. Boehmer and his collaborators,[47] explored the possibility that static and spherically symmet-
ric traversable wormhole (WH) geometries are supported by modified teleparallel gravity. Bahamonde et al.,[48] studied the Lorentzian
WH geometries in non-minimally coupled scalar fields possessing torsion and boundary term in modified gravity. Much work is ac-
cessible in this hypothesis on different cosmological angles like the reconstruction of scalar fields, accelerated expanding universe,
cosmological perturbation, Birkhoff’s theorem, large-scale structure, thermodynamical laws validity, solar system limitations, etc.[49]

The existence of WH geometries is one of the most attractive subjects in contemporary cosmology. WHs are as the passage-like
topological structures connecting two remote elements of the same universe or special universes through a shortcut called a tunnel
or bridge. WHs, in general, are classified into two kinds of structures, specifically, the static WHs geometries, and the dynamical WH
structures.[50] The presence of a WH is an ultimate consequence of a solution of Einstein Field Equations which contain a non-trivial
organized linkage of scattered objects in spacetime. Despite the speculative reality of the WHs, these associations stay predictable
with the GR. Significant distances like billion light-years or more; brief distances comprising not many meters; various universes;
time-dependent diversified points in the Universe might be related to utilizing these WHs. The blend of space and time into just a
solitary spacetime continuum, as anticipated in the exceptional hypothesis of special relativity, may permit one hypothetically to go
across space and time through a WH, utilizing some particular right conditions.
Even though theWHs as a consequence of the Schwarzschild solution are not traversable in both of the directions, yet their presence

stirred the associated investigations to consider the prospect of traversableWHs shaped by holding theWH throat open in the presence
of exotic matter. Lorentzian WHs,[51] WHs producing a foam geometry within a general relativistic spacetime manifold uncovered by
Lorentzianmanifold, and EuclideanWHs are also examples of non-traversableWHs. The traversableWH solution was first presented
by Morris and Thorne.[52] This idea was very not quite the same as those formerly hypothesized by Einstein and Nathan Rosen
in 1935 who accomplished an answer notable today as the Einstein-Rosen bridge.[53] Also it was dissimilar to the charge-possessing
infinitesimalWHs as told byWheeler[51] and to theWHs allowing the two-path traffic of the human being like objects. Notwithstanding
their skeptical presence of aWHsimilar to this, the investigation ofMoris and Thorne has opened different opportunities for additional
productive and momentous exploration which incorporates the far-reaching investigation of vital crucial properties of WHs,[54–69]

utilizing them as time-machine,[70,71] the connection issues concerning causality infringement,[72,73] and the constituted quantum
or Plank-scale WHs.[74,75] Moreover, Övgün et al. constructed an exact wormhole solution in bumblebee gravity for investigating the
consequences of spontaneous Lorentz violation.[58]

It merits referencing here that it is the extraordinary exotic matter which is liable for the presence of WHs in GR. This exotic matter
includes stress-energy tensor T𝜇𝜈 which turns into the explanation behind the infringement of the null energy condition (NEC). It
is worth mentioning here that NEC has the illustration of T𝜇𝜈k

𝜇k𝜈 with k𝜇 representing the presence of null vector. Presently, this
has turned out to be an exciting situation for the WH contemporary physics to find the sustainable circumstances for the exotic
spacetimes through the incorporation of non-exoticmatter sources. There exist several candidates indicating the references for higher-
dimensional WH geometries such as Gauss-Bonnet theory of gravity,[76] WH solutions concerning brane,[77] as well as Brans-Dicke
theory.[78] An effective systematic approach may be found in [79] comprising the WH geometries. Lobo and Oliveira[80] built the WH
solutions in f (R) theory of gravity and presented exact solutions in the context of f (R) gravity by employing an explicit shape-function
and various expressions of the equation of state parameter. Static WH geometries in f (R) gravity were investigated by Sharif and
Zahra. Övgün et al. studied the quasinormal modes and greybody factors of f (R) gravity minimally coupled to a cloud of strings
in 2 + 1 Dimensions.[81] Moreover, particle acceleration by static black holes in a Model of f (R) gravity was investigated by Halilsoy
et al.[82]
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For the growth of theWHgeometries, the existence of some exotic fluid (a presumptuousmatter form) ismandatory which disturbs
the null energy constraint (NEC) in GR. The violation of NEC is considered as the fundamental requirement for the existence of WH
geometries. Discovering WH arrangements in GR has consistently been an incredible test for scientists. Although GR permits the
presence of WHs, it is important to initially change the issue area by including some additional terms (since the ordinary fluid fulfills
the energy limits and subsequently abuses the fundamental standards for the presence of the WH). These additional terms are liable
for energy-bound infringement and henceforth allow the presence of WH in GR. In 1935, Einstein and Rosen[83] talked about the
numerical models of WHs in GR and they acquired the WH arrangements known as Lorentzian WHs or Schwarzschild WHs. In
1988, it was indicated[84] that WHs could be enormous enough for humanoid voyagers and even grant time travel.
Referring here to the literature[85,87] concerning the WH geometries, various writers have developed WH solutions by including

various sorts of fascinating issues like quintom, scalar field models, noncommutative geometrical models, and electromagnetic field,
and so on, and got distinctive intriguing and genuinely suitable outcomes. Some significant and intriguing outcomes concerning
the steady WH arrangements without the incorporation of any exotic matter content are examined in [88,89]. In a work,[90], the pres-
ence of the WH arrangements and their various properties in the modified f (R, T) gravity has been examined. The coordinates in
“on a D-brane, might be assumed as operators of noncommutative origin”, this is perhaps the most fascinating part of the noncom-
mutative geometrical aspects of the string hypothesis, giving a numerical method to investigate some significant ideas of quantum
gravity.[91,92] The noncommutative geometrical approach is a push to build a unified stage where one may assume the spacetime
forces of gravitation as a joined type of frail and solid forces due to gravity. The non-commutativity approach has the significant ele-
ment of supplanting point-like constructions with dispersed items and henceforth compares to the spacetime quantification, which
is because of the commutator characterized by [x𝜁 , x𝜂 ] = 𝜄𝜃𝜁𝜂 , where 𝜃𝜁𝜂 is an anti-symmetric matrix of second order. This dispersal
impact can be demonstrated by including Gaussian and Lorentzian distributions of insignificant length

√
𝜃 rather than the Dirac

delta function. The spherically symmetric, static particle-like gravitational source addressing the geometry of Gaussian distribution
with non-commutative nature with the maximum mass M possesses. While, regarding the Lorentzian dispersion, we can take the
density capacity of the particle-like massM. Here, the entire massM can be thought as a WH, a form of diffused unified object and,
𝜃 being the noncommutative parameter. The Gaussian matter distribution has been employed by Sushkov to model the phantom-
energy supported WHs.[96] Likewise, Nicolini and Spalluci,[97] implemented this type of matter distribution to establish the physical
implications of short-separated variations of non-commutating coordinates in exploring black holes.
Having enthused by the work in teleparallel gravity and other modified theories of gravity, here in our work, spherically symmetric

static WH geometries have been constructed under the modification of f (𝜏) gravity with matter coupling T . In Section 2, the basic
description of themathematical formulation of f (𝜏, T) gravity along with the fundamental criteria for the existence ofWH geometries,
exclusive expressions for the energy density and stress profiles, and corresponding energy bounds are provided. In Section 3, the
traversable WH solutions by incorporating the linear model of f (𝜏, T) = 𝛼𝜏(r) + 𝛽T + 𝜙 for both the Gaussian and Lorentzian sources
of non-commutative geometry have been provided. In Section 4, the stability of the Gaussian and Lorentzian WH geometries is
discussed through graphical analysis. Section 5 gives the embedding diagrams of our traversable WH solutions of the Gaussian and
Lorentzian sources. Section 6 concludes our entire work.

2. f (𝝉 , T) Gravity

The modification of f (𝜏) gravity with matter coupling T is defined with the following modified action

SA = ∫ dx4e
{ 1
2k2

f (𝜏, T) + (m)

}
, (1)

where, e = det(eA
𝜇
) =

√
−g, k2 = 8𝜋G = 1 and, T = 𝛿𝜀𝛼

𝛾
𝜏𝛾
𝜀𝛼

= [−𝜌,+pr,+pt,+pt]. (m) represents Lagrangian density. The Contorsion,
Torsion, and super potential are the key elements of this modified gravity, and are expressed as

K𝜀𝜐

𝜆
= −1

2

(
𝜏𝜀𝜐𝜆 − 𝜏𝜐𝜀𝜌 − 𝜏𝜆𝜀𝜐

)
, 𝜏𝜆

𝜀𝜐
= e𝜗

𝜆(𝜕𝜀e
𝜗
𝜐 − 𝜕𝜐e𝜗𝜀), S𝜆

𝜀𝜐 = 1
2

(
K𝜀𝜐

𝜆 + 𝛿𝜀𝜆𝜏𝛾𝜀𝛾 − 𝛿𝜐𝜆𝜏𝛾𝜀𝛾
)
. (2)

In Equation (2), the term 𝜏 is defined by the relation, i.e.,𝜏 = 𝜏𝜆𝜅𝜐S𝜆
𝜅𝜐.

The spherically symmetric geometry is chosen for this study, the line element of which is expressed as:

ds2 = −ea(r)dt2 + eb(r)dr2 + r2(d𝜃2 + sin2 𝜃d𝜙2), (3)

where a(r) = 2𝜛(r) and b(r) = log(1 − 𝜖s(r)

r
)−1. Here, 𝜛(r) and 𝜖s(r) represent the red-shift, and the WH shape functions, respectively.

Both the functions have some necessary conditions, which are summarized as

• Redshift function should be positive and free from any horizon.
• In this study, redshift function is kept constant, i.e.,𝜛 ′ = 0.
• WH shape-function must be positive with increasing behavior.
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• WH throat must exist, i.e., 𝜖s(r0) = r0.
• The ratio of WH shape function and radial coordinate must approach to zero as radial coordinate approaches to infinity, i.e., 𝜖s

r
→ 0.

• WH shape function should fulfill the flaring out condition, i.e., 𝜖′s ∣r=r0< 1.
• The critical constraint of b′

𝜖
(r0) < 1 must be satisfied for the existence of WH structure.

Now, the diagonal tetrad is calculated as:

e𝜂
𝛾
=
(
e
a(r)
2 , e

b(r)
2 , r, r sin 𝜃

)
. (4)

The determinant of e𝜂
𝛾
is calculated as e = ea(r)+b(r)r2 sin 𝜃. The anisotropic energy momentum tensor is expressed as:

T𝛼𝜔 = (𝜌 + pt)u𝛼u𝜔 − ptg𝛼𝜔 + (pr − pt)v𝛼v𝜔. (5)

where u𝛼 = e
a
2 𝛿0

𝛼
and v𝛼 = e

b
2 𝛿1

𝛼
. Here 𝜌, pr , and pt represent the energy density, radial and tangential components of pressure, respec-

tively. From Equation (1), we can get the generalized field equations of f (𝜏, T) gravity by using the energy momentum tensor as:

[
e−1𝜕𝜀(ee

𝛼

aS
𝜔𝜀

𝛼
) + e𝛼a𝜏

𝜀

a𝛼S
a𝜔
𝜀

]
f𝜏 + e𝛼aS

𝜔𝜀

𝛼
(f𝜏𝜏𝜕𝜀𝜏 + f𝜏T𝜕𝜀T) +

e𝜔a f

4
−
( e𝛼aT

𝜔
𝛼
+ pte

𝜔
a

2

)
fT =

e𝛼aT
𝜔
𝛼

4
. (6)

The valid expression for 𝜏, for a WH space-time takes the following form:

𝜏(r) = 2e−b(r)

r2
. (7)

Here, we use suitable linear model for f (𝜏, T) gravity with diagonal tetrad, as follows:

f (𝜏, T) = 𝛼𝜏(r) + 𝛽T + 𝜓. (8)

where 𝛼, 𝛽 and 𝜓 are constants. By plugging Equation (3), Equation (5), and Equations (7) and (8) in Equation (6), we get the
following field equations for f (𝜏, T) gravity:

𝜌 =
−(𝛽 + 2)r3𝜓 + 𝛼(𝛽 − 4)r𝜖′s (r) + 𝛼𝛽𝜖s(r)

4(𝛽2 + 𝛽 − 2)r3
, (9)

pr =
(𝛽 + 2)r3𝜓 + 3𝛼𝛽r𝜖′s (r) + 𝛼(4 − 5𝛽)𝜖s(r)

4(𝛽2 + 𝛽 − 2)r3
, (10)

pt =
(𝛽 + 2)r

(
r2𝜓 + 𝛼𝜖′s (r)

)
+ 𝛼(𝛽 − 2)𝜖s(r)

4(𝛽2 + 𝛽 − 2)r3
. (11)

Now, we discuss the energy conditions (ECs), i.e., null energy condition (NEC), weak energy condition (WEC), strong energy
condition (SEC) and dominant energy condition (DEC), and are read as

NEC : 𝜌 + pr ≥ 0, 𝜌 + pt ≥ 0,

WEC : 𝜌 ≥ 0, 𝜌 + pr ≥ 0, 𝜌 + pt ≥ 0,

SEC : 𝜌 + pr ≥ 0, 𝜌 + pt ≥ 0, 𝜌 + pr + 2pt ≥ 0,

DEC : 𝜌 ≥ 0, 𝜌 − |pr| ≥ 0, 𝜌 − |pt| ≥ 0.

Theses ECs for f (𝜏, T) gravity are satisfied by the normal matter because of positive density and positive pressure. To discuss the
WH construction, we shall check the behavior of the ECs, as the NEC violation is the necessary requirement for the existence of
exotic matter.
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3. The Study of Traversable Wormhole

In this section, we shall explore different features of WH geometry. In order to calculate the shape function of WH, we consider the
smearing effects by using the noncommutative geometry. For this purpose, we shall plug two kinds (Gaussian and Lorentzian) of
non-commutative geometries in this study. The Gaussian and Lorentzian sources of energy density are expressed as:

𝜌 = Me−
r2

4𝜃

8𝜋3∕2𝜃3∕2
, 𝜌 =

√
𝜃M

𝜋2(𝜃 + r2)2
. (12)

whereM is the total particle mass, 𝜃 is the direct non-commutative parameter for Lorentzian and Gaussian non-commutative geome-
tries. By comparing Equation (9) and Equation (12), we get the following differential equations

−(𝛽 + 2)r3𝜓 + 𝛼(𝛽 − 4)r𝜖′s (r) + 𝛼𝛽𝜖s(r)
4(𝛽2 + 𝛽 − 2)r3

= Me−
r2

4𝜃

8𝜋3∕2𝜃3∕2
, (13)

−(𝛽 + 2)r3𝜓 + 𝛼(𝛽 − 4)r𝜖′s (r) + 𝛼𝛽𝜖s(r)
4(𝛽2 + 𝛽 − 2)r3

=
√
𝜃M

𝜋2(𝜃 + r2)2
. (14)

On solving Equation (13), we get the following shape function of WH for the Gaussian source of the non-commutative geometry

𝜖s(r) = ((𝛽 − 4)(−r))
𝛽

4−𝛽

⎛⎜⎜⎜⎜⎜⎝
C1 −

(𝛽 + 2)r4((𝛽 − 4)(−r))
4
𝛽−4

(
𝜋3∕2(𝛽−4)𝜓

𝛽−3
−

(𝛽−1)M×ExpIntegralE
(
− 2
𝛽−4−1,

r2

4𝜃

)
𝜃3∕2

)
4𝜋3∕2𝛼

⎞⎟⎟⎟⎟⎟⎠
. (15)

where “ExpIntegralE” is a special function, and it can be written as E− 2
𝛽−4−1

( r
2

4𝜃
) and C1 is a constant of integration. Now, by plugging

Equation (15) in Equations (9)–(11), we get energy density and components of pressure for Gaussian distribution as:

𝜌 = Me−
r2

4𝜃

8𝜋3∕2𝜃3∕2
, (16)

pr =
1

32(𝛽2 + 𝛽 − 2)r3
×

(
4

(
6𝛼𝛽2C1((𝛽 − 4)(−r))−

4
𝛽−4

(𝛽 − 4)2r
− 2𝛼(5𝛽 − 4)C1((𝛽 − 4)(−r))

𝛽

4−𝛽

+

(𝛽 − 1)(𝛽 + 2)r3
(

(𝛽+1)Me−
r2
4𝜃

𝜋3∕2𝜃3∕2
+ 4𝜓

)
𝛽 − 3

)
+
2(𝛽 − 1)2

(
𝛽2 − 4

)
Mr5E−2− 2

𝛽−4

(
r2

4𝜃

)
𝜋3∕2(𝛽 − 4)(𝛽 − 3)𝜃5∕2

)
, (17)

pt =

4(𝛽−1)

⎛⎜⎜⎜⎜⎜⎜⎝
16𝛼C1((𝛽−4)(−r))

− 4
𝛽−4

(𝛽−4)2
+

(𝛽+2)r4
⎛⎜⎜⎜⎝
(𝛽+1)Me

− r2
4𝜃

𝜋3∕2𝜃3∕2
+4𝜓

⎞⎟⎟⎟⎠
𝛽−3

⎞⎟⎟⎟⎟⎟⎟⎠
r

+
2(𝛽3−3𝛽+2)Mr5E−2− 2

𝛽−4

(
r2

4𝜃

)
𝜋3∕2(𝛽−4)(𝛽−3)𝜃5∕2

32(𝛽2 + 𝛽 − 2)r3
. (18)

The graphical behavior of shape function 𝜖s(r) is provided in Figure 1 for both the Gaussian and the Lorentzian distributions. In
the first row, the 𝜖s(r) for the Gaussian framework are described with three different values of the matter coupling parameter, i.e.,
𝛽 = 0.70, 0.90, 1.10 by left, middle, and right parts respectively. The second row represents the graphical analysis for the Lorentzian
framework for 𝛽 = 0.70, 0.90, & 1.10 by left, middle, and right parts respectively. It can be verified from Figure 1 that 𝜖s(r) is regularly
increasing with positive behavior. The increasing behavior of the shape function shows that our calculated shape functions in both
Gaussian and Lorentzian distributions are well-fitted for the WH study. The derivative of shape function 𝜖s(r) can be seen in Figure 2
for both distributions. In first row the d𝜖s

dr
under Gaussian framework is shown for 𝛽 = 0.70, 0.90, & 1.10 by left, middle, and right
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Figure 1. Shows the required behavior of 𝜖s(r).

Figure 2. Shows the required behavior of d𝜖s
dr
.
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Figure 3. Shows the required behavior of 𝜖s
r
.

Table 1. Detailed summary of WH properties for Gaussian non-commutative distribution under 𝛼 = 0.5, C1 = 0.2, 𝜃 = 0.9, M = 0.5, and 𝜓 = 3.036 ×
10−34.

Gaussian Noncommutative Distribution

Parameter∕Expressions 𝛽 = 0.70 𝛽 = 0.90 𝛽 = 1.10

𝜖s(r) 𝜖s(r) > 0 in 0.1 ≤ r ≤ 20 𝜖s(r) > 0 in 0.1 ≤ r ≤ 20 𝜖s(r) > 0 in 0.1 ≤ r ≤ 20
d𝜖s
dr

d𝜖s
dr

∣r0< 1 in 0.1 ≤ r ≤ 20 d𝜖s
dr

∣r0< 1 in 0.1 ≤ r ≤ 20 d𝜖s
dr

∣r0< 1 in 0.1 ≤ r ≤ 20
𝜖s
r

𝜖s
r
→ 0 as r → ∞ 𝜖s

r
→ 0 as r → ∞ 𝜖s

r
→ 0 as r → ∞

𝜖s − r r0 = 0.120 r0 = 0.145 r0 = 0.165

portions, respectively. d𝜖s
dr
for the Lorentzian framework is provided in the second row of Figure 2 for 𝛽 = 0.70, 0.90, & 1.10 by left,

middle, and right portions, respectively. The required behavior d𝜖s
dr
< 1 may be verified from Figure 2. The existence of the constraint

d𝜖s
dr
< 1 depicts that our calculated results in both the distributions satisfy the flaring out condition of WH.
The ratio 𝜖s

r
vanishes as r approaches to infinity, i.e., 𝜖s

r
→ 0 as r → ∞ in both cases, which can be verified from Figure 3. The acquir-

ing of the expression 𝜖s

r
→ 0 as r → ∞ for 𝛽 = 0.70, 0.90, & 1.10 by left, middle, and right portions respectively validates the flatness

property of the space-time. This property exhibits that WH space-time should be flat under both Gaussian and Lorentzian distribu-
tions in this scenario. The flatness condition is indispensable in WH study the fulfillment of which depicts the overwhelming role of
the noncommutative geometry in the ongoing WH study. The WH throats are calculated via 𝜖s − r for both Gaussian and Lorentzian
distributions. From the first row of Figure 4, it can be perceived that we get different values of WH throats against the different values
of parameter 𝛽,i.e., 𝛽 = 0.70, 0.90, & 1.10 by left, middle, and right parts respectively. In the Gaussian framework, the WH throats
are calculated as r0 = 0.120 for 𝛽 = 0.70, r0 = 0.145 for 𝛽 = 0.90, and r0 = 0.165 for 𝛽 = 1.10. In the Lorentzian distribution, the WH
throats are calculated as r0 = 0.180 for 𝛽 = 0.70, r0 = 0.165 for 𝛽 = 0.90, and r0 = 0.145 for 𝛽 = 1.10, these throats can be verified from
the second row of Figure 4. The different values of WH throat show the critical impact of parameter 𝛽 in the current scenario. The
different values of parameter 𝛽 provide the different WH throat locations. All the properties for both the cases are provided in Tables 1
and 2.
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Figure 4. Shows the required behavior of 𝜖s − r.

Table 2. Detailed summary of WH properties for Lorentzian noncommutative distribution 𝛼 = 0.5, C2 = 0.2, 𝜃 = 0.9,M = 0.5, and 𝜓 = 3.036 × 10−34.

Lorentzian Noncommutative Distribution

Parameter∕Expressions 𝛽 = 0.70 𝛽 = 0.90 𝛽 = 1.10

𝜖s(r) 𝜖s(r) > 0 in 0.1 ≤ r ≤ 20 𝜖s(r) > 0 in 0.1 ≤ r ≤ 20 𝜖s(r) > 0 in 0.1 ≤ r ≤ 20
d𝜖s
dr

d𝜖s
dr

∣r0< 1 in 0.1 ≤ r ≤ 20 d𝜖s
dr

∣r0< 1 in 0.1 ≤ r ≤ 20 d𝜖s
dr

∣r0< 1 in 0.1 ≤ r ≤ 20
𝜖s
r

𝜖s
r
→ 0 as r → ∞ 𝜖s

r
→ 0 as r → ∞ 𝜖s

r
→ 0 as r → ∞

𝜖s − r r0 = 0.180 r0 = 0.165 r0 = 0.145

Further, the ECs for the Gaussian distribution are calculated as

𝜌 + pr =
1

8𝜋3∕2(𝛽 − 4)2(𝛽 − 3)(𝛽 + 2)𝜃5∕2r4
×

(
16𝜋3∕2𝛼(𝛽 − 3)(𝛽 − 2)C1𝜃

5∕2((𝛽 − 4)(−r))−
4
𝛽−4

+ 1
2
(𝛽 − 4)(𝛽 − 2)(𝛽 − 1)(𝛽 + 2)Mr6E−2− 2

𝛽−4

(
r2

4𝜃

)
+ 2(𝛽 − 4)2(𝛽 + 2)𝜃r4

(
2𝜋3∕2𝜃3∕2𝜓 + (𝛽 − 1)Me−

r2

4𝜃

))
, (19)

𝜌 − pr =
𝛽 − 1

16𝜋3∕2(𝛽 − 4)(𝛽 − 3)(𝛽2 + 𝛽 − 2)𝜃5∕2r3
×

(
8𝜋3∕2𝜃5∕2

(
4𝛼(𝛽 − 3)(𝛽 − 2)C1((𝛽 − 4) × (−r))

𝛽

4−𝛽 − (𝛽 − 4)(𝛽 + 2)r3𝜓

)

−(𝛽 − 2)(𝛽 − 1)(𝛽 + 2)Mr5E−2− 2
𝛽−4

(
r2

4𝜃

)
− 8(𝛽 − 4) × (𝛽 + 2)𝜃Mr3e−

r2

4𝜃

)
, (20)
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𝜌 + pt =
1

16𝜋3∕2(𝛽 − 4)2(𝛽 − 3)(𝛽 + 2)𝜃5∕2r4
×

(
32𝜋3∕2𝛼(𝛽 − 3)C1𝜃

5∕2((𝛽 − 4)(−r))−
4
𝛽−4 + (𝛽 − 4)

× (𝛽 − 1)(𝛽 + 2)Mr6E−2− 2
𝛽−4

(
r2

4𝜃

)
+ 4(𝛽 − 4)2(𝛽 + 2)𝜃r4

(
2𝜋3∕2𝜃3∕2𝜓 + (𝛽 − 1)Me−

r2

4𝜃

))
, (21)

𝜌 − pt =
1

16𝜋3∕2(𝛽 − 4)(𝛽 − 3)(𝛽 + 2)𝜃5∕2r3
×

(
8𝜋3∕2𝜃5∕2

(
4𝛼(𝛽 − 3)C1((𝛽 − 4)(−r))

𝛽

4−𝛽 − (𝛽 − 4)

× (𝛽 + 2)r3𝜓

)
−
(
𝛽2 + 𝛽 − 2

)
Mr5E−2− 2

𝛽−4

(
r2

4𝜃

)
− 8(𝛽 − 4)(𝛽 + 2)𝜃Mr3e−

r2

4𝜃

)
, (22)

𝜌 + pr + 2pt =
−1

16𝜋3∕2(𝛽 − 4)(𝛽 − 3)(𝛽 + 2)𝜃5∕2r3
×

(
8𝜋3∕2𝜃5∕2

(
4𝛼(𝛽 − 3)𝛽C1((𝛽 − 4)(−r))

𝛽

4−𝛽 − 3

× (𝛽 − 4)(𝛽 + 2)r3𝜓

)
− 𝛽

(
𝛽2 + 𝛽 − 2

)
Mr5E−2− 2

𝛽−4

(
r2

4𝜃

)
− 8(𝛽 − 4)𝛽(𝛽 + 2)𝜃Mr3e−

r2

4𝜃

)
, (23)

On solving Equation (14), we can get the shape function of WH for the Lorentzian source as:

𝜖s(r) =
2
(
𝛽2 + 𝛽 − 2

)√
𝜃M

(
− r2

𝜃

)− 2
𝛽−4

(
Beta

(
− r2

𝜃
, 2
𝛽−4

+ 1,−1
)
− Beta

(
− r2

𝜃
, 2
𝛽−4

+ 1, 0
))

𝜋2𝛼(𝛽 − 4)r
+
(𝛽 + 2)r3𝜓
4𝛼(𝛽 − 3)

+ C2((𝛽 − 4)(−r))
𝛽

4−𝛽 . (24)

where “Beta” is a special function, and it is calculated as B− r2

𝜃

( 2
𝛽−4

+ 1,−1) and C2 is a constant of integration. Now, by using Equation

(24) in Equations (9)–(11), we get energy density and the stress components of Lorentzian source as:

𝜌 =
√
𝜃M

𝜋2(𝜃 + r2)2
, (25)

pr =
1
2
×

(8(𝛽 − 2)(𝛽 − 1)
√
𝜃M

(
− r2

𝜃

)− 2
𝛽−4

(
B− r2

𝜃

(
1 + 2

𝛽−4
, 0
)
− B− r2

𝜃

(
1 + 2

𝛽−4
,−1

))
𝜋2(𝛽 − 4)2r4

+ 𝜓

𝛽 − 3
+
4𝛼(𝛽 − 2)C2((𝛽 − 4)(−r))−

4
𝛽−4

(𝛽 − 4)2(𝛽 + 2)r4
+

6𝛽
√
𝜃M

𝜋2(𝛽 − 4)(𝜃 + r2)2

)
, (26)

pt =
4(𝛽 − 1)

√
𝜃M

(
− r2

𝜃

)− 2
𝛽−4

(
B− r2

𝜃

(
1 + 2

𝛽−4
, 0
)
− B− r2

𝜃

(
1 + 2

𝛽−4
,−1

))
𝜋2(𝛽 − 4)2r4

+ 𝜓

2(𝛽 − 3)
+
2𝛼C2((𝛽 − 4)(−r))−

4
𝛽−4−2

(𝛽 + 2)r2
+

(𝛽 + 2)
√
𝜃M

𝜋2(𝛽 − 4)(𝜃 + r2)2
. (27)

Further, the ECs for the Lorentzian distribution are calculated as

𝜌 + pr =
−1

2𝜋2(𝛽 − 4)2r4(𝜃 + r2)2
×

(
((𝛽 − 4)(−r))−

4
𝛽−4

(𝛽 − 3)(𝛽 + 2)

(
(𝛽 + 2)r3((𝛽 − 4)(−r))

𝛽

𝛽−4

(
8(𝛽 − 3)(𝛽 − 1)

√
𝜃M + 𝜋2(𝛽 − 4)𝜓

(
𝜃 + r2

)2)

−4𝜋2𝛼(𝛽 − 3)(𝛽 − 2)C2

(
𝜃 + r2

)2) + 8(𝛽 − 2)(𝛽 − 1)M
√
𝜃

(
− r2

𝜃

)− 6
𝛽−4

((
𝜃 + r2

)2(− r2

𝜃

) 4
𝛽−4

B− r2

𝜃

(
1 + 2

𝛽 − 4
,−1

)

−

((
𝜃2 + r4

)(
− r2

𝜃

) 4
𝛽−4

− 2𝜃2
(
− r2

𝜃

) 𝛽

𝛽−4
)
B− r2

𝜃

(
1 + 2

𝛽 − 4
, 0
)))

, (28)
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𝜌 − pr =
1

2𝜋2(𝛽 − 4)r3
×

(
1

(𝛽 − 3)(𝛽 + 2)(𝜃 + r2)2

(
4𝜋2𝛼(𝛽 − 3)(𝛽 − 2)C2((𝛽 − 4)(−r))−

𝛽

𝛽−4

+
(
𝜃 + r2

)2 + (𝛽 + 2)r3
(

− 4(𝛽 − 3)(𝛽 + 2)
√
𝜃M − 𝜋2(𝛽 − 4)𝜓

(
𝜃 + r2

)2))
+
8(𝛽 − 1)Mr√

𝜃

×

(
2F1

(
1, 2
𝛽 − 4

+ 1; 2
𝛽 − 4

+ 2;− r2

𝜃

)
− 2F1

(
2, 1 + 2

𝛽 − 4
; 2 + 2

𝛽 − 4
;− r2

𝜃

)))
, (29)

𝜌 + pt =
1

2𝜋2(𝛽 − 4)2r4
×

(
4𝜋2𝛼C2((𝛽 − 4)(−r))−

4
𝛽−4

𝛽 + 2
− 8(𝛽 − 1)

√
𝜃M

(
− r2

𝜃

)− 2
𝛽−4

×B− r2

𝜃

(
1 + 2

𝛽 − 4
,−1

)
+ (𝛽 − 4)r4

(
𝜋2(𝛽 − 4)𝜓
𝛽 − 3

+
4(𝛽 − 1)

√
𝜃M

(𝜃 + r2)2

)

+ 1
(𝛽 − 3)(𝛽 + 2)

8
√
𝜃M

(
− r2

𝜃

)− 6
𝛽−4

(𝜃 + r2)2
× B− r2

𝜃

(
2

𝛽 − 4
+ 1, 0

)(
2𝛽(2𝛽 + 5)𝜃2

(
− r2

𝜃

) 𝛽

𝛽−4

+

(
(𝛽 − 3)(𝛽 − 1)(𝛽 + 2)𝜃2 + (𝛽 − 3)(𝛽 − 1)(𝛽 + 2)r4 + 2

(
𝛽3 + 6

)
𝜃r2

)(
− r2

𝜃

) 4
𝛽−4

))
, (30)

𝜌 − pt =
1

2𝜋2(𝛽 − 4)2r4
×

(
−(𝛽 − 4)r

(𝛽 − 3)(𝛽 + 2)(𝜃 + r2)2

(
(𝛽 + 2)r3

(
12(𝛽 − 3)

√
𝜃M + 𝜋2(𝛽 − 4)𝜓

(
𝜃 + r2

)2)

− 4𝜋2𝛼(𝛽 − 3)C2((𝛽 − 4)(−r))−
𝛽

𝛽−4
(
𝜃 + r2

)2) + 8(𝛽 − 1)
√
𝜃M

(
− r2

𝜃

)− 2
𝛽−4

×

(
B− r2

𝜃

(
1 + 2

𝛽 − 4
,−1

)
− B− r2

𝜃

(
1 + 2

𝛽 − 4
, 0
)))

, (31)

𝜌 + pr + 2pt =
−1

2𝜋2(𝛽 − 4)2r4
×

(
3(𝛽 − 4)r4

(
−
𝜋2(𝛽 − 4)𝜓
𝛽 − 3

−
4𝛽

√
𝜃M

(𝜃 + r2)2

)
− 1
𝛽 + 2

(
4𝜋2𝛼𝛽C2((𝛽 − 4)(−r))−

4
𝛽−4

)

+ 8(𝛽 − 1)𝛽
√
𝜃M

(
− r2

𝜃

)− 2
𝛽−4

(
B− r2

𝜃

(
1 + 2

𝛽 − 4
,−1

)
− B− r2

𝜃

(
1 + 2

𝛽 − 4
, 0
)))

, (32)

where 2F1 is hypergeometric special function.
The ECs have a critical role in the WH study. In this regard, we shall calculate the expressions for 𝜌 + pr , 𝜌 − pr , 𝜌 + pt, 𝜌 − pt,

and 𝜌 + pr + 2pt. The graphical behavior of ECs is provided in Figures 5–9 for the Gaussian and the Lorentzian distributions. From
the Figure 5, the NEC has been seen violated, i.e., 𝜌 + pr < 0 within 1 ≤ r ≤ 20 in both the cases for 𝛽 = 0.70, 0.90, & 1.10, which
is compatible with the non-commutative geometries. This violation of (NEC) confirms the presence of exotic matter in both the
cases which is necessary requirement for the WH existence. The positive graphical behavior of 𝜌 − pr can be noticed from the
Figure 6 for both Gaussian (first row) and Lorentzian (second row) under the similar parametric constraints and is reflected in
the left, middle, and right portions, respectively. The graphical conduct of 𝜌 + pt for both the Gaussian (first row) and Lorentzian
(second row) is described in the Figure 7. It is evident from the Figure 7 that 𝜌 + pt remains positive, i.e., 𝜌 + pt > 0 within
1 ≤ r ≤ 20. The negative conduct of 𝜌 − pt can be noticed from Figure 8 for both the distributions. Further, the graphical behavior
of 𝜌 + pr + 2pt expression can be revealed from the Figure 9 for both the Gaussian (first row) and the Lorentzian (second row) under
𝛽 = 0.70, 0.90, & 1.10 by left, middle, and right parts, respectively. All the calculated results of ECs in this scenario are provided in
Tables 3 and 4.
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Figure 5. Shows the behavior of 𝜌 + pr .

Figure 6. Shows the behavior of 𝜌 − pr .
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Figure 7. Shows the behavior of 𝜌 + pt.

Figure 8. Shows the behavior of 𝜌 − pt.
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Figure 9. Shows the behavior of 𝜌 + pr + 2pt.

Table 3. Detailed summary of ECs for Gaussian non-commutative distribution 𝛼 = 0.5, C1 = 0.2, 𝜃 = 0.9,M = 0.5, and 𝜓 = 3.036 × 10−34.

Gaussian Noncommutative Distribution

Parameter∕Expressions 𝛽 = 0.70 𝛽 = 0.90 𝛽 = 1.10

𝜌 + pr 𝜌 + pr < 0 in 1 ≤ r ≤ 20 𝜌 + pr < 0 in 1 ≤ r ≤ 20 𝜌 + pr < 0 in 1 ≤ r ≤ 20

𝜌 − pr 𝜌 + pr > 0 in 1 ≤ r ≤ 20 𝜌 + pr > 0 in 1 ≤ r ≤ 20 𝜌 + pr > 0 in 1 ≤ r ≤ 20

𝜌 + pt 𝜌 + pt > 0 in 1 ≤ r ≤ 20 𝜌 + pt > 0 in 1 ≤ r ≤ 20 𝜌 + pt > 0 in 1 ≤ r ≤ 20

𝜌 − pt 𝜌 − pt < 0 in 3 ≤ r ≤ 20 𝜌 − pt < 0 in 3 ≤ r ≤ 20 𝜌 − pt < 0 in 3 ≤ r ≤ 20

𝜌 + pr + 2pt 𝜌 + pr + 2pt < 0 in 1 ≤ r ≤ 3.5 𝜌 + pr + 2pt < 0 in 1 ≤ r ≤ 3.3 𝜌 + pr + 2pt < 0 in 1 ≤ r ≤ 3.1

4. Stability of Gaussian and Lorentzian Wormholes Models

Here, we test the stability of our obtained solutions by utilizing Tolman-Oppenheimer-Volkov (TOV) equation with one extra term
due to the matter coupling, which is described as

𝜛
′

2
(𝜌 + pr) +

dpr
dr

+ 2
r
(pr − pt) +

(
−2𝛽
𝛽 + 1

×
(
1
4
d𝜌
dr

− 1
4
dpr
dr

−
dpt
dr

))
= 0, (33)

where

Fh =
dpr
dr

, Fg = −𝜛
′

2
(𝜌 + pr), Fa =

2
r
(pt − pr), Fe =

(
−2𝛽
𝛽 + 1

×
(
1
4
d𝜌
dr

− 1
4
dpr
dr

−
dpt
dr

))
(34)
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Table 4. Detailed summary of ECs for Lorentzian non-commutative distribution 𝛼 = 0.5, C2 = 0.2, 𝜃 = 0.9,M = 0.5, and 𝜓 = 3.036 × 10−34.

Lorentzian Noncommutative Distribution

Parameter∕Expressions 𝛽 = 0.70 𝛽 = 0.90 𝛽 = 1.10

𝜌 + pr 𝜌 + pr < 0 in 1 ≤ r ≤ 20 𝜌 + pr < 0 in 1 ≤ r ≤ 20 𝜌 + pr < 0 in 1 ≤ r ≤ 20

𝜌 − pr 𝜌 + pr > 0 in 1 ≤ r ≤ 20 𝜌 + pr > 0 in 1 ≤ r ≤ 20 𝜌 + pr > 0 in 1 ≤ r ≤ 20

𝜌 + pt 𝜌 + pt > 0 in 1 ≤ r ≤ 20 𝜌 + pt > 0 in 1 ≤ r ≤ 20 𝜌 + pt > 0 in 1 ≤ r ≤ 20

𝜌 − pt 𝜌 − pt < 0 in 1 ≤ r ≤ 20 𝜌 − pt < 0 in 1 ≤ r ≤ 20 𝜌 − pt < 0 in 1 ≤ r ≤ 20

𝜌 + pr + 2pt 𝜌 + pr + 2pt > 0 in 1 ≤ r ≤ 20 𝜌 + pr + 2pt > 0 in 1 ≤ r ≤ 20 𝜌 + pr + 2pt > 0 in 1 ≤ r ≤ 20

In Equation (34), the terms Fg , Fa, Fh and Fe represent the gravitational, anisotropic, hydrostatic, and extra forces. The force Fg should
be zero in both the Gaussian and the Lorentzian distributions. For Gaussian distribution the Fa, Fh and Fe forces are calculated as

Fa = −
4𝛼(𝛽 − 3)C1((𝛽 − 4)(−r))−

4
𝛽−4

(𝛽 − 4)2(𝛽 + 2)r5
−
(𝛽 − 1)MrE−2− 2

𝛽−4

(
r2

4𝜃

)
8𝜋3∕2(𝛽 − 4)𝜃5∕2

, (35)

Fh = 1
64𝜋3∕2(𝛽 − 4)3(𝛽 + 2)𝜃7∕2r5

(
512𝜋3∕2𝛼(𝛽 − 3)(𝛽 − 2)C1𝜃

7∕2((𝛽 − 4)(−r))−
4
𝛽−4

+ (𝛽 − 4)2(𝛽 + 2)Mr6
(
3𝛽r2E−3− 2

𝛽−4

(
r2

4𝜃

)
− 4(5𝛽 + 2)𝜃E−2− 2

𝛽−4

(
r2

4𝜃

)))
, (36)

Fe =

𝛽

⎛⎜⎜⎝
(𝛽−4)2(𝛽+2)Mr6

(
28𝜃E−2− 2

𝛽−4

(
r2

4𝜃

)
−3r2E−3− 2

𝛽−4

(
r2

4𝜃

))
𝜋3∕2𝜃7∕2

− 256𝛼(𝛽 − 3)C1((𝛽 − 4)(−r))−
4
𝛽−4

⎞⎟⎟⎠
64(𝛽 − 4)3(𝛽 + 1)r5

. (37)

For the Lorentzian distribution the Fa, Fh and Fe forces are calculated as

Fa = 4
𝜋2(𝛽 − 4)2r5

(
(𝛽 − 4)r

(
𝜋2𝛼(𝛽 − 3)C2((𝛽 − 4)(−r))−

𝛽

𝛽−4

𝛽 + 2
−
(𝛽 − 1)

√
𝜃Mr3

(𝜃 + r2)2

)

+ 2(𝛽 − 3)(𝛽 − 1)
√
𝜃M

(
− r2

𝜃

)− 2
𝛽−4

(
B− r2

𝜃

(
1 + 2

𝛽 − 4
,−1

)
− B− r2

𝜃

(
1 + 2

𝛽 − 4
, 0
)))

, (38)

Fh = 4
𝜋2(𝛽 − 4)2r4

(
−
2𝜋2𝛼(𝛽 − 3)(𝛽 − 2)C2((𝛽 − 4)(−r))−

𝛽

𝛽−4

𝛽 + 2
+ 1
(𝜃 + r2)3

(√
𝜃Mr3

(
2(𝛽 − 2)

+ (𝛽 − 1)𝜃(𝛽(5𝛽 − 18) + 4)r2
))

+
4(𝛽 − 3)(𝛽 − 1)Mr√

𝜃

(
− 2F1

(
1, 1 + 2

𝛽 − 4
; 2 + 2

𝛽 − 4
;− r2

𝜃

)

× 2F1

(
2, 2
𝛽 − 4

+ 1; 2
𝛽 − 4

+ 2;− r2

𝜃

)))
, (39)

Fe =
2𝛽

𝜋2(𝛽 − 4)2(𝛽 + 1)r5

(
𝜋2𝛼(𝛽 − 3)C2r((𝛽 − 4)(−r))−

𝛽

𝛽−4 −
(𝛽 + 2)

√
𝜃Mr4

(
(𝛽 − 1)𝜃 + (4𝛽 − 13)r2

)
(𝜃 + r2)3

+
2(𝛽 − 3)

(
𝛽2 + 𝛽 − 2

)√
𝜃M

(
− r2

𝜃

)− 2
𝛽−4

(
B− r2

𝜃

(
1 + 2

𝛽−4
,−1

)
− B− r2

𝜃

(
1 + 2

𝛽−4
, 0
))

𝛽 − 4

)
. (40)
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Figure 10. Shows the behavior of TOV equation.

Table 5. Detailed summary of Fa, Fh and Fe for the Gaussian non-commutative distribution under 𝛼 = 0.5, C1 = 0.2, 𝜃 = 0.9,M = 0.5, and 𝜓 = 3.036 ×
10−34.

Gaussian Noncommutative Distribution

Parameter∕Expressions 𝛽 = 0.70 𝛽 = 0.90 𝛽 = 1.10

Fh Fh < 0 in 0.1 ≤ r ≤ 20 Fh < 0 in 0.1 ≤ r ≤ 20 Fh < 0 in 0.1 ≤ r ≤ 20

Fe Fe > 0 in 0.1 ≤ r ≤ 20 Fe > 0 in 0.1 ≤ r ≤ 20 Fe > 0 in 0.1 ≤ r ≤ 20

Fa Fa > 0 in 0.1 ≤ r ≤ 20 Fa > 0 in 0.1 ≤ r ≤ 20 Fa > 0 in 0.1 ≤ r ≤ 20

Fa,&Fh,&Fe Fa,&Fh,&Fe(Balanced) Fa,&Fh,&Fe(Balanced) Fa,&Fh,&Fe(Balanced)

Figure 10 provides the balanced behavior of the diversified forces Fa, Fh and Fe. The first row of Figure 10 shows that these forces
balance the effect of each other and leave the stable WH configuration under the particular values of different involved parameters for
the Gaussian distribution. The second row of Figure 10 gives the stableWH configuration under similar conditions for the Lorentzian
distribution. The balanced behavior of the three different forces shows that our obtained results are physically viable for the existence
of WH geometries in both the cases. A detailed analysis of these forces is provided in Tables 5 and 6.

5. Embedding Diagram of Wormhole with Gaussian and Lorentzian Distributions

To symbolize the noncommutative WH structure, we need to discuss the embedding figure and extract the specifically required
conditions. To take specific spherical symmetric space-time with an equatorial slice, we use 𝜃 = 2𝜋 and t = const. in Equation (3),
which then becomes

ds2 =
(
1 −

𝜖s(r)
r

)−1

dr2 + r2d𝜙2, (41)

The Equation (3) can be embedded into 3-D Euclidean space-time with cylindrical symmetry, which is expressed as

ds2Ξ = dh2 + dr2 + r2d𝜙2, (42)
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Table 6. Detailed summary of Fa, Fh and Fe for Lorentzian non-commutative distribution under 𝛼 = 0.5, C1 = 0.2, 𝜃 = 0.9, M = 0.5, and 𝜓 = 3.036 ×
10−34.

Lorentzian Noncommutative Distribution

Parameter∕Expressions 𝛽 = 0.70 𝛽 = 0.90 𝛽 = 1.10

Fh Fh < 0 in 0.1 ≤ r ≤ 20 Fh < 0 in 0.1 ≤ r ≤ 20 Fh < 0 in 0.1 ≤ r ≤ 20

Fe Fe < 0 in 0.1 ≤ r ≤ 20 Fe < 0 in 0.1 ≤ r ≤ 20 Fe < 0 in 0.1 ≤ r ≤ 20

Fa Fa > 0 in 0.1 ≤ r ≤ 20 Fa > 0 in 0.1 ≤ r ≤ 20 Fa > 0 in 0.1 ≤ r ≤ 20

Fa,&Fh,&Fe Fa,&Fh,&Fe(Balanced) Fa,&Fh,&Fe(Balanced) Fa,&Fh,&Fe(Balanced)

Figure 11. Shows the behavior of embedding diagram for lower and upper Universe.

The above Equation (42) can be rewritten as

ds2Ξ =

(
1 +

(
dh
dr

)2
)
dr2 + r2d𝜙2, (43)

By matching Equations (41)–(44), we get the following relation

dh
dr

= ±
(

r
𝜖s(r)

− 1
)−1∕2

, (44)

From Equation (44) the expression dh
dr
approaches to zero as 𝜖s

r
→ 0 with r → ∞ shows that at the throat r0 the embedded surface

should be vertical. The embedded surface diagram for h(r) > 0 (upper universe) and h(r) < 0 (lower universe) for the Gaussian dis-
tribution can be seen from Figure 11. For the Lorentzian distribution, the embedded surface diagram for h(r) > 0 (upper universe)
and h(r) < 0 (lower universe) is provided in Figure 12. Away from the r0, the space is asymptotically flat because dh

dr
→ 0 with r → ∞,

it can be confirmed from the embedded surface diagrams for both the distributions.
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Figure 12. Shows the behavior of embedding diagram for lower and upper Universe.

6. Critical Analysis on Anisotropic Pressure Under Gaussian and Lorentzian Distributions

In this section, we shall discuss some aspects of anisotropic pressure. The Gaussian and Lorentzian energy densities by Equation
(12) should remain positive under the positive values of involved parameters, i.e., 𝜃 = 0.9 andM = 0.5. In this study, the anisotropy,
i.e., △ = pt − pr is seen positive. The positive behavior of △ shows that pt > pr , which can be verified from the Figure 13. It is also
found from Figure 13 that ∣ pt ∣<∣ pr ∣. Further, the positive behavior of△ guarantees the presence of exotic matter. Comprehensive
consolidated readings on pressure components and energy density are provided in Table 7.

7. Conclusion

In GR, the existence of WH geometries possessing exotic matter has always fascinated the researchers as its presence leads to the
violation of NECwhich then guarantees the existence ofWH geometries. However, as for themodified theories are concerned, finding
the WH solutions becomes even more captivating topic due to the inclusion of effective energy-momentum tensor that causes the
violation of NEC regardless of the presence of any such separate exoticmatter. In this work, we have explored the spherically symmetric
WH geometries involving the Gaussian and the Lorentzian non-commutative sources in the modified f (T, 𝜏) gravity. To achieve our
goal, we have incorporated a linear model, i.e., f (𝜏, T) = 𝛼𝜏(r) + 𝛽T + 𝜙, where 𝛼, 𝛽 and 𝜙 are constants, and 𝜏(r) = 2e−b(r)

r2
. Using the

energy-momentum tensor and the other crucial ingredients, we have worked out the exclusive expressions for the energy density,
radial, and tangential components of pressure.
We have worked out the shape function 𝜖s(r) for both the Gaussian and the Lorentzian distributions separately with three different

values of the matter coupling parameter, i.e., 𝛽 = 0.70, 0.90, & 1.10 and have analyzed them graphically. It can be verified from
Figure 1 that 𝜖s(r) smoothly increases and remains positive for both the cases. Such behavior of the 𝜖s(r) displays that our calculated
shape functions in both the Gaussian and the Lorentzian distributions support the existence of WH geometries in our work. We
have also examined the tangents of the shape function 𝜖s(r) for both the sources with the same values of the parameter 𝛽 and have
found that d𝜖s

dr
< 1 which is evident the from Figure 2. The critical constraint of d𝜖s

dr
< 1 describes the flaring out the condition of WH

geometries which is justified in both of our cases to favor the existence of the WH geometries as well.
We have also discussed for both the Gaussian and the Lorentzian distributions an important ratio 𝜖s

r
→ 0 as r → ∞ which gives

the flatness property to be fulfilled for the existence of valid WH geometries. The plots in Figure 3 tell us the story of the fulfillment
of this critical condition for the parametric values of 𝛽 = 0.70, 0.90, & 1.10 The flatness conduct demonstrates the overwhelming
character of non-commutative geometry in the WH study. We have worked out the WH throats locations through 𝜖s − r for both
the Gaussian and the Lorentzian distributions. From the plots of Figure 4, the throat positions can be sited against the diversified
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Figure 13. Shows the behavior of anisotropy and pressure components.

Table 7. Detailed summary of 𝜌, pr and pt for the Gaussian non-commutative distribution under 𝛼 = 0.5, C1 = 0.2, 𝜃 = 0.9, M = 0.5, and 𝜓 = 3.036 ×
10−34.

Gaussian Non-commutative Distribution

Parameter∕Expressions 𝛽 = 0.70 𝛽 = 0.90 𝛽 = 1.10

𝜌 𝜌 < 0 in 0.1 ≤ r ≤ 20 𝜌 < 0 in 0.1 ≤ r ≤ 20 𝜌 < 0 in 0.1 ≤ r ≤ 20

pr pr < 0 in 0.1 ≤ r ≤ 20 pr < 0 in 0.1 ≤ r ≤ 20 pr < 0 in 0.1 ≤ r ≤ 20

pt pt > 0 in 0.1 ≤ r ≤ 20 pt > 0 in 0.1 ≤ r ≤ 20 pt > 0 in 0.1 ≤ r ≤ 20

△ △ > 0 in 0.1 ≤ r ≤ 20 △ > 0 in 0.1 ≤ r ≤ 20 △ > 0 in 0.1 ≤ r ≤ 20
𝜌

pr

𝜌

pr
< 0 in 0.1 ≤ r ≤ 20 𝜌

pr
< 0 in 0.1 ≤ r ≤ 20 𝜌

pr
< 0 in 0.1 ≤ r ≤ 20

𝜌

pt

𝜌

pt
> 0 in 0.1 ≤ r ≤ 20 𝜌

pt
> 0 in 0.1 ≤ r ≤ 20 𝜌

pt
> 0 in 0.1 ≤ r ≤ 20

parametric values of 𝛽,i.e., 𝛽 = 0.70, 0.90, & 1.10. In the Gaussian framework, the WH throats are premeditated as r0 = 0.120 for
𝛽 = 0.70, r0 = 0.145 for 𝛽 = 0.90, and r0 = 0.165 for 𝛽 = 1.10, which can be witnessed at the first row of the plots of Figure 4. For
the Lorentzian distribution, the WH throats locations are found as r0 = 0.180 for 𝛽 = 0.70, r0 = 0.165 for 𝛽 = 0.90, and r0 = 0.145 for
𝛽 = 1.10, these throats can be confirmed from the second row of Figure 4. These diverse values of WH throat reflect the critical impact
of parameter 𝛽 in the current situation. The distinct values of the parameter 𝛽 deliver the diversified WH throat locations. Tables 1
and 2 are confined with the thorough aspects for both the cases under investigations.
The role of the Energy bounds has always remained very critical to explore the WH geometries. For this purpose, we have worked

out the expressions 𝜌 + pr , 𝜌 − pr , 𝜌 + pt, 𝜌 − pt, and 𝜌 + pr + 2pt, to constitute the energy constraints. We have analyzed the behavior
of ECs as reflected in the plots of Figures 5–9 for both, the Gaussian and the Lorentzian distributions. Figure 5, unveils the violation of
NEC i.e., 𝜌 + pr < 0 within the radial constraint of 1 ≤ r ≤ 20 for 𝛽 = 0.70, 0.90, & 1.10, hence favoring both of the non-commutative
geometries. The (NEC) violation is the key to the presence of exotic matter in both the cases and is essential requirement for the
existence of WH solutions. We have noted the positive profile of 𝜌 − pr , 𝜌 + pt, and 𝜌 + pr + 2pt as shown in Figures 6, 7, and 9 under
the same parametric conditions within 1 ≤ r ≤ 20. Moreover, we have also witnessed the negative behavior of 𝜌 − pt as reflected in
Figure 8 for both of the distributions. The results concerning ECs are provided in Tables 3 and 4.
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We have also investigated the stability of our emerging solutions by incorporating the Tolman-Oppenheimer-Volkov (TOV) equa-
tion. For this purpose, we have worked out the constituent diverse forces Fa, Fh, and Fe, the total effect of which remained almost
zero to confirm the stability of WH configuration as reflected in the plots of Figure 10 for both the cases under the same conditions.
A detailed analysis of the three different forces is provided in Tables 5 and 6.
To highlight the nature of the non-commutative WH structure, we have demonstrated specifically the embedding figures. The em-

bedded surface diagram for h(r) > 0 (upper universe) and h(r) < 0 (lower universe) for the Gaussian and the Lorentzian distributions
is reflected in Figures 11 and 12, respectively. We note that beyond the positioning of r0, the space is asymptotically flat due to dh

dr
→ 0

as r → ∞. Finally, we have also discussed some characteristics of anisotropic pressure. The Gaussian and the Lorentzian energy den-
sities explained by Equation (12) have remained positive in our study for 𝜃 = 0.9 andM = 0.5. Moreover, the anisotropy,△ = pt − pr
has been noted as positive such that pt > pr , as shown in Figure 13. We have also noted that ∣ pt ∣<∣ pr ∣. Further, the positive behavior
of△warranties the presence of exotic matter. A detailed summary of pressure components and energy density can be seen in Table 7.
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