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Abstract We study the quantum tunneling of charged mas-
sive vector bosons from a charged static and a rotating black
string. We apply the standard methods, first we use the WKB
approximation and the Hamilton-Jacobi equation, and then
we end up with a set of four linear equations. Finally, solv-
ing for the radial part by using the determinant of the metric
equals zero, the corresponding tunneling rate and the Hawk-
ing temperature is recovered in both cases. The tunneling
rate deviates from pure thermality and is consistent with an
underlying unitary theory.

Keywords Hawking radiation · Proca equation · Vector
particles tunneling · Black strings

1 Introduction

In his seminal paper (Hawking 1975), Steven Hawking
showed that black holes radiate thermally due to the quan-
tum effects and this radiation is known as Hawking radia-
tion. Thus, for the first time, it has been established a re-
lation between thermodynamics and space-time geometry.
Furthermore, the entropy of the black hole is shown to be
proportional to the surface area of the black hole.

Besides the Hawking’s original method, today there ex-
ists a number of different approaches deriving the Hawking
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temperature (Gibbons and Hawking 1977a,b; Umetsu 2010).
The tunneling method (Kraus and Wilczek 1994, 1995;
Parikh and Wilczek 2000; Parikh 2002, 2004; Angheben
et al. 2005; Srinivasan and Padmanabhan 1999; Shankara-
narayanan et al. 2001; Vanzo et al. 2011), has been stud-
ied in details and shown to be very successful for calcu-
lating the Hawking temperature for different types of par-
ticles emitted from static as well as stationary space-time
metrics (Sakalli and Övgün 2015b; Kerner and Mann 2006,
2008a,b; Yale and Mann 2009). Hawking temperature de-
pends on the black hole mass M , charge Q and angular mo-
mentum J , using the tunneling approach, it is also shown
that, the Hawking temperature for a particular black hole
configuration remains unaltered and unaffected by the na-
ture of particles emitted from the black hole. Moreover, the
radiation spectrum is shown to deviate from pure thermality
due to the conservation of energy, and hence the theory is
consistent with an underlying unitary theory.

Due to the non-linearity of the Einstein’s field equa-
tions it is very difficult to find exact solutions. However,
apart from the standard solutions characterized with spheri-
cal symmetry, solutions with cylindrical symmetry have also
been found, such solutions are known as cylindrical black
holes or black strings (Lemos and Zanchin 1996; Cai and
Zhang 1996). The tunneling of scalar and Dirac particles
from charged static/rotating black string has been also in-
vestigated (Gohar and Saifullah 2013a,b; Ahmed and Sai-
fullah 2011a,b). Recently, the tunneling of massive spin-1
particles has attracted interest (Li and Chen 2015; Övgün
and Jusufi 2016; Sakalli and Övgün 2015a,c, 2016; Kruglov
2014a,b). Therefore, in this paper, we aim to study the tun-
neling of massive vector bosons W± (spin-1 particles) from
the space-time of a charged static and a rotating black string.
First, we derive the field equations by using the Lagrangian
given by the Glasgow-Weinberg-Salam model. We then use
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the WKB approximation and the separation of variables
which results with a set of four linear equations, solving
for the radial part by using the determinant of the metric
equals zero, we found the tunneling rate and the correspond-
ing Hawking temperature in both cases.

The paper is organized as follows. In Sect. 2, we investi-
gate the tunneling of massive vector particles from the static
charged black strings and calculate the corresponding tun-
neling rate and the Hawking temperature. In Sect. 3, we
extend our calculations for the case of tunneling of mas-
sive vector particles from a rotating charged black string.
In Sect. 4, we comment on our results.

2 Tunneling from static charged black strings

2.1 Static charged black strings (SCBSs)

We can begin by writing the Einstein-Hilbert action with a
negative cosmological constant in the presence of an elec-
tromagnetic field given by

S = 1

16πG

∫
d4x

√−g(R − 2�)

− 1

16π

∫
d4x

√−gFμνFμν, (1)

where the Maxwell electromagnetic tensor is given by

Fμν = ∂μAν − ∂νAμ. (2)

If one takes into account the cylindrical symmetries of the
space-time, then the line element for a static charged black
string with negative cosmological constant in the presence
of electromagnetic fields is shown to be (Lemos and Zanchin
1996; Cai and Zhang 1996)

ds2 = −f (r)dt2 + f (r)−1dr2 + r2dθ2 + α2r2dz2, (3)

where

f (r) = α2r2 − b

αr
+ c2

α2r2
, (4)

and

α2 = −1

3
�, b = 4GM, c2 = 4GQ2. (5)

Solving for α2r2 − b
αr

+ c2

α2r2 = 0, one can easily find the
outer horizon given by Gohar and Saifullah (2013a)

r+ = b
1
3
√

s +
√

2
√

s2 − 4p2 − s

2α
, (6)

where

s =
(

1

2
+ 1

2

√
1 − 4

(
4p2

3

)3) 1
3

+
(

1

2
− 1

2

√
1 − 4

(
4p2

3

)3) 1
3

, (7)

p2 = c2

b
4
3

. (8)

2.2 Tunneling of massive vector bosons from SCBSs

Let us now write the Lagrangian density which describes the
W±-bosons in a background electromagnetic field given by
(Li and Chen 2015)

L = −1

2

(
D+

μ W+
ν − D+

ν W+
μ

)(
D−μW−ν − D−νW−μ

)

+ m2
W

�2
W+

μ W−μ − i

�
eFμνW+

μ W−
ν , (9)

where D±μ = ∇μ ± i
�
eAμ and ∇μ is the covariant geomet-

ric derivative. Also, e gives the charge of the W+ boson, Aμ

is the electromagnetic vector potential of the black string
given by Aμ = (−h(r),0,0,0), here h(r) = 2Q/αr , where
Q is the charge of the black string. Using the above La-
grangian the equation of motion for the W -boson field reads

1√−g
∂μ

[√−g
(
D±νW±μ − D±μW±ν

)]

± ieAμ

�

(
D±νW±μ − D±μW±ν

)

+ m2
W

�2
W±ν ± i

�
eFμνW±

μ = 0 (10)

where Fμν = ∇μAν − ∇νAμ. In this work, we will inves-
tigate the tunneling of W+ boson, therefore one needs to
solve the following equation

1√−g
∂μ

[√−ggμαgνβ

(
∂βW+

α − ∂αW+
β + i

�
eAβW+

α

− i

�
eAαW+

β

)]
+ ieAμgμαgνβ

�

(
∂βW+

α − ∂αW+
β

+ i

�
eAβW+

α − i

�
eAαW+

β

)

+ m2
Wgνβ

�2
W+

β + i

�
eF ναW+

α = 0, (11)

for ν = 0,1,2,3. Using the WKB approximation

W+
μ (t, r, θ, z) = Cμ(t, r, θ, z) exp

(
i

�
S(t, r, θ, z)

)
, (12)
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where the action is given by

S(t, r, θ, z) = S0(t, r, θ, z) + �S1(t, r, θ, z) + · · · (13)

We can now use the last three equations and neglect the
terms of higher order of �, then one can find the following
set of four equations:

0 = C0

(
−(∂1S0)

2 − (∂2S0)
2

r2f
− (∂3S0)

2

α2r2f
− m2

f

)

+ C1
(
(∂1S0)(eA0 + ∂0S0)

)

+ C2

(
(∂2S0)

r2f
(∂0S0 + eA0)

)

+ C3

(
(∂3S0)

α2r2f
(∂0S0 + eA0)

)
, (14)

0 = C0
(−(∂1S0)(eA0 + ∂0S0)

)

+ C2

(
f

(∂1S0)(∂2S0)

r2

)

+ C1

(
−f

(∂2S0)
2

r2
− f

(∂3S0)
2

α2r2

+ (∂0S0 + eA0)
2 − m2f

)

+ C3

(
f

(∂1S0)(∂3S0)

α2r2

)
, (15)

0 = C0

(
−∂2S0

(
∂0S0 + eA0

f

))

+ C1
(
f (∂2S0)(∂1S0)

) + C3

(
(∂2S0)(∂3S0)

α2r2

)

+ C2

(
−f (∂1S0)

2 − (∂3S0)
2

α2r2

+ (∂0S0 + eA0)
2

f
− m2

)
, (16)

0 = C0

(
−∂3S0

(
∂0S0 + eA0

f

))

+ C1
(
f (∂3S0)(∂1S0)

) + C2

(
(∂2S0)(∂3S0)

r2

)

+ C3

(
−f (∂1S0)

2 − (∂2S0)
2

r2

+ (∂0S0 + eA0)
2

f
− m2

)
. (17)

From the metric (3), it is clear that due to the space-time
symmetries we can use the following ansatz for the action

S0(t, r, θ, z) = −Et + W(r) + J1θ + J2z + C, (18)

where E,J1, J2 and C are constants. Therefore, the non-
zero elements of the coefficient matrix 	 are given by

	11 = −(
W ′)2 − J 2

1

r2f
− J 2

2

α2r2f
− m2

f

	12 = −	21 = W ′(eA0 − E)

	13 = J1

r2f
(eA0 − E)

	14 = J2

α2r2f
(eA0 − E)

	22 =
(

−f
J 2

1

r2
− f

J 2
2

α2r2
+ (eA0 − E)2 − m2f

)

	23 = f
W ′J1

r2

	24 = f
W ′J2

α2r2

	31 = −J1
(eA0 − E)

f

	32 = f J1W
′

	33 =
(

−f
(
W ′)2 − J 2

2

α2r2
+ (eA0 − E)2

f
− m2

)

	34 = J1J2

α2r2

	41 = −J2(eA0 − E)

f

	42 = f J2W
′

	43 = J1J2

r2

	44 =
(

−f
(
W ′)2 − J 2

1

r2
+ (eA0 − E)2

f
− m2

)
.

(19)

The nontrivial solution of this equation (Kruglov 2014a)

	(C0,C1,C2,C3)
T = 0, (20)

is obtained by using the determinant of the matrix equals
zero, det	 = 0, it follows

m2(−r2(E − eA0)
2α2 + f 2r2α2(W ′)2

+ ((
m2r2 + J 2

1

)
α2 + J 2

2

)
f

)3 = 0. (21)

Solving this equation for the radial part leads to the fol-
lowing integral

W±(r) = ±
∫

dr

f (r)

×
√

(E − eA0)2 − f (r)

(
m2 + J 2

1

r2
+ J 2

2

α2r2

)

(22)
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Expanding the function f (r) in Taylor’s series near the
horizon

f (r+) ≈ f ′(r+)(r − r+), (23)

and by integrating around the pole at the outer horizon r+,
gives

W±(r) = ± iπ(E − eA0)

f ′(r+)
. (24)

Now we can set the probability of the ingoing particle to
100 % (since every outside particle falls into the black hole),
it follows

P− � e−2ImW− = 1,

which implies ImC = −ImW−. For the outgoing particle
we have ImS+ = ImW+ + ImC, and also we make use of
W+ = −W−, which leads to the probability for the outgoing
particle given by

P+ = e−2ImS � e−4ImW+ . (25)

In this way the tunneling rate of particles tunneling from
inside to outside the horizon is given by


 = P+
P−

� e(−4ImW+). (26)

We can find the Hawking temperature simply by comper-
ing the last result with the Boltzmann factor 
 = e−βEnet ,
where Enet = (E − eA0) and β = 1/TH , yielding

TH = f ′(r+)

4π
. (27)

Using Eq. (4), one can recover the Hawking temperature
for a static charged black string (Gohar and Saifullah 2013a)

TH = 1

4π

(
2α2r+ + b

αr2+
− 2c2

α2r3+

)
. (28)

3 Tunneling from rotating charged black strings

3.1 Rotating charged black strings (RCBSs)

Lemos derived a rotating charged cylindrically symmet-
ric exact solution of Einstein equations for a black string
(Lemos and Zanchin 1996). The line element for a RCBSs
is given by (Gohar and Saifullah 2013a)

ds2 = −F(r)dt2 + R2(r)(Ndt + dθ)2 + dr2

G(r)
+ α2r2dz2,

(29)

where the lapse function F and the shift function N are
given as

G =
(

α2r2 − b

αr
+ c2

α2r2

)
, (30)

F = f G, (31)

f =
(

γ 2 − ω2

α2

)2
r2

R2
, (32)

N = − γω

α2R2

(
b

αr
− c2

α2r2

)
, (33)

and

R2 = γ 2r2 − ω2

α4

(
α2r2 − b

αr
+ c2

α2r2

)
. (34)

Noted that the rotation parameter a = J/M , constant
α2 = −�/3, where � is the cosmological constant, M is
the ADM mass, Q is the charge of the black string, and J

is the angular momentum. In addition, b and c are defined
as

b = 4M

(
1 − 3a2α2

2

)
, (35)

c2 = 4Q2
(

1 − 3a2α2/2

1 − a2α2/2

)
. (36)

Furthermore, γ 2 and ω2/α2 are defined as

γ 2 = 2GM

b
± 2G

b

√
M2 − 8Jα2

9
, (37)

ω2

α2
= 4GM

b
∓ 4G

b

√
M2 − 8Jα2

9
, (38)

or

γ =
√√√√ 1 − a2α2

2

1 − 3a2α2

2

, ω = aα2√
1 − 3a2α2

2

. (39)

Let us now introduce the electromagnetic field associated
with the vector potential of the RCBSs

Aμ = (A0,0,A2,0) (40)

where A0 = −γ h(r), A2 = ω

α2 h(r), and h(r) is an arbitrary
function of r for the line charge density along the z-line
given by Q = Qz


z
= γ λ.

3.2 Tunneling of massive vector bosons from RCBSs

To exactly reveal the massive vector particle’s tunneling ra-
diation, we should solve the Proca equation in Eq. (11). Fol-
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lowing the standard procedure, we use the WKB approxi-
mation Eq. (12) with the action Eq. (13) in the background
of the RCBSs spacetime and neglect the factors of higher
orders of �. Then using the following ansatz for the action

S0 = −Et + W(r) + J1θ + J2z + k, (41)

where E,J1, J2 and k are constants, we get four decoupled
equations such as:

C0

f G2R2r2α2

[
f G3R2r2α2W ′2 + G

[((
m2r2α2 + J 2

2

)
f G

− r2(eA2 + J1)Nα2((eA2 + J1)N − eA0 + E
))

R2

+ r2α2f G(eA2 + J1)
2]]

− (
(eA2 + J1)N − eA0 + E

) W ′

f G
C1

+ (−erA2 − J1r)

f Gr

(
(eA2 + J1)N − eA0 + E

)
C2

− C3J2

f G

(
(eA2 + J1)N − eA0 + E

) = 0,

C0

f GR2α2r2

(−α2f G2R2eA0r
2W ′ + α2R2f G2W ′r2E

)

+ 2

[
α2(((−N2A2 + NA0

)
R2 + f GA2

)
e

− R2NE
)
r2J1 + 1

2
α2r2(−R2N2 + f G

)
J 2

1

− α2R2e(NA2 − A0)r
2E − 1

2
R2α2r2E2

+ α2r2
(

1

2

(
m2f G − e2(NA2 − A0)

2)R2

+ 1

2
f Ge2A2

2

)
+ 1

2
R2f GJ 2

2

]
C1

f GR2α2r2

+ [−α2f G2R2A2er
2W ′ − α2G2f R2W ′r2J1

]

× C2

f GR2α2r2
− GJ2W

′C3 = 0,

[−α2(−f G2R
(−R2N2 + f G

)
rE

− f G2(N2A0erR
2 − f GA0er

)
R

)
rJ1

− α2Rf G2((reA2N
2 − 2A0erN

)
R2 − f GA2er

)
rE

− α2r2f G2R3NE2 + α2f G2(e2(NA2 − A0)A0rNR2

− f GA2A0e
2r

)
Rr

] C0

f 2G3R3r2α2

+
[
−α2r2f G2R

(−R2N2 + f G
)
W ′J1

− 2α2f G2R

(
−1

2
erN(NA2 − A0)R

2

+ 1

2
f GA2er

)
rW ′

+ α2R3f G2Nr2W ′E
]

C1

f 2G3R3r2α2

+ [−α2(f G2R3NrE − f G2NA0erR
3)rJ1

+ f 2G3R3J 2
2

+ α2f G2(f Grm2 + e2(NA2 − A0)A0r
)
R3r

− α2R3f G2(NA2er − 2A0er)rE − α2r2f G2R3E2

+ r2α2R3f 2G4W ′2] C2

f 2G3R3r2α2

+ [−α2r2f G2R
(−R2N2 + f G

)
J2J1

+ α2R3r2f G2NJ2E − α2f G2R
((−N2A2 + NA0

)
R2

+ f GA2
)
er2J2

]
C3 = 0,

(−f G2A0erR + RrG2f E
) J2

Rα2r3f G2
C0 − W ′J2C1

r2α2

+ (−Rf G2A3er − J1Rf G2r
) J2

Rα2r3f G2
C2

− [
r
(−R2N2 + f G

)
J 2

1

− 2
(((−N2A2 + NA0

)
R2 + f GA2

)
e − R2NE

)
rJ1

− rR2f G2W ′2 + rR2E2 + 2erR2(NA2 − A0)E

− ((
m2f G − e2(NA2 − A0)

2)R2

+ f Ge2A2
2

)
r
] C3

Grf R2
= 0.

Then the non-zero elements of the coefficient matrix �

are calculated as following

�11 = [
f G3R2r2α2W ′2 + G

[((
m2r2α2 + J 2

2

)
f G

− r2(eA2 + J1)Nα2((eA2 + J1)N − eA0 + E
))

R2

+ r2α2f G(eA2 + J1)
2]],

�12 = −(
(eA2 + J1)N − eA0 + E

)
W ′,

�13 = (−erA2 − J1r)
(
(eA2 + J1)N − eA0 + E

)
,

�14 = −J2
(
(eA2 + J1)N − eA0 + E

)
,

�21 = (−α2f G2R2eA0r
2W ′ + α2R2f G2W ′r2E

)
,

�22 = 2

[
α2(((−N2A2 + NA0

)
R2 + f GA2

)
e

− R2NE
)
r2J1 + 1

2
α2r2(−R2N2 + f G

)
J 2

1

− α2R2e(NA2 − A0)r
2E − α2r2f G2R3NE2
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+ α2r2
(

1

2

(
m2f G − e2(NA2 − A0)

2)R2

+ 1

2
f Ge2A2

2

)
+ 1

2
R2f GJ 2

2

]
,

�23 = [−α2f G2R2A2er
2W ′ − α2G2f R2W ′r2J1

]
,

�24 = −GJ2W
′,

�31 = [−α2(−f G2R
(−R2N2 + f G

)
rE

− f G2(N2A0erR
2 − f GA0er

)
R

)
rJ1

− α2Rf G2((reA2N
2 − 2A0erN

)
R2

− f GA2er
)
rE − α2r2f G2R3NE2

+ α2f G2 + (
e2(NA2 − A0)A0rNR2

− f GA2A0e
2r

)
Rr

]
,

�32 =
[
−α2r2f G2R

(−R2N2 + f G
)
W ′J1

− 2α2f G2R

(
−1

2
erN(NA2 − A0)R

2

+ 1

2
f GA2er

)
rW ′

+ α2R3f G2Nr2W ′E
]
,

�33 = [−α2(f G2R3NrE − f G2NA0erR
3)rJ1

+ f 2G3R3J 2
2

+ α2f G2(f Grm2 + e2(NA2 − A0)A0r
)
R3r

− α2R3f G2(NA2er − 2A0er)rE

− α2r2f G2R3E2 + r2α2R3f 2G4W ′2],
�34 = [−α2r2f G2R

(−R2N2 + f G
)
J2J1

+ α2R3r2f G2NJ2E

− α2f G2R
((−N2A2 + NA0

)
R2 + f GA2

)
er2J2

]
,

�41 = (−f G2A0erR + RrG2f E
)
J2,

�42 = −W ′J2,

�43 = (−Rf G2A2er − J1Rf G2r
)
J2,

�44 = −[
r
(−R2N2 + f G

)
J 2

1

− 2
(((−N2A2 + NA0

)
R2 + f GA2

)
e

− R2NE
)
rJ1 − rR2f G2W ′2 + rR2E2

+ 2erR2(NA2 − A0)E

− ((
m2f G − e2(NA2 − A0)

2)R2 + f Ge2A2
2

)
r
]
.

The nontrivial solution of this equation (Kruglov 2014a)

�(C0,C1,C2,C3)
T = 0, (42)

is obtained by using the determinant of the matrix equals
zero, det� = 0, it follows

−m2[−f G2R2r2α2W ′2 + (−f
(
m2r2α2 + J 2

2

)
G

+ r2α2((eA2 + J1)N − eA0 + E
)2)

R2

− Gf α2r2(eA2 + J1)
2]3 = 0. (43)

Solving this equation for the radial part leads to the fol-
lowing integral, as noted that F(r) = f (r)G(r),

W±(r) = ±
∫

R(r)

(γ 2 − ω2

α2 )rG(r)
dr

×
[(

E − eA0 + (eA2 + J1)N
)2

− F

[(
m2 + J 2

2

r2α2

)
+ (eA2 + J1)

2

R2

]]1/2

(44)

Integrating around the pole at the outer horizon r+, and
by using R(r+) = γ r+, gives (Angheben et al. 2005; Srini-
vasan and Padmanabhan 1999)

W±(r) = ± iπγ (E − eA0 + (eA2 + J1)N)

(γ 2 − ω2

α2 )G′(r+)
, (45)

where Enet = (E − eA0 + (eA2 + J1)N). By the same way
used in the first part, the tunneling rate of particles tunneling
from inside to outside the horizon is given by


 = P+
P−

� e(−4ImW+). (46)

On the other hand, using Eqs. (30) and (39), it follows

γ 2 − ω2

α2
= 1, (47)

and

G′(r+) =
(

2α2r+ + b

αr2+
− 2c2

α2r2+

)
. (48)

Again, comparing the Boltzmann factor 
 = e−βEnet ,
with the tunneling rate, gives the Hawking temperature (Go-
har and Saifullah 2013b; Ahmed and Saifullah 2011a)

TH = G′(r+)

4π

(γ 2 − ω2

α2 )

γ
= 1

4πγ

(
2α2r+ + b

αr2+
− 2c2

α2r2+

)
.

(49)
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4 Conclusion

To summarize, in this paper, we derive the charged black
strings temperature using the Hamilton-Jacobi method of the
tunneling formalism for the massive vector particles. In the
case of a static black string, we start from the field equations,
then we use the WKB approximation and the separation of
variables which results with a set of four equations. In or-
der to work out the Hawking temperature, we solve the ra-
dial part by using the determinant of the metric equals zero.
Next, we extend our results to the rotating case and calcu-
late the Hawking temperature. Finally, the results presented
in this work extend the tunneling method for massive vec-
tor bosons in the case of static/rotating black strings and are
consistent with those in the literature (Gohar and Saifullah
2013a,b; Ahmed and Saifullah 2011a,b).
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