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Abstract – We show in detail that the Parikh-Wilczek tunneling method (PWTM), which was
designed for resolving the information loss problem in Hawking radiation (HR) fails whenever the
radiation occurs from an isothermal process. The PWTM aims to produce a non-thermal HR
which adumbrates the resolution of the problem of unitarity in quantum mechanics (QM), and
consequently the entropy (or information) conservation problem. The effectiveness of the method
has been satisfactorily tested on numerous black holes (BHs). However, it has been shown that the
isothermal HR, which results from the emission of the uncharged particles of the linear dilaton BH
(LDBH) described in the Einstein-Maxwell-Dilaton (EMD) theory, the PWTM has vulnerability in
having non-thermal radiation. In particular, we consider Painlevé-Gullstrand coordinates (PGCs)
and isotropic coordinates (ICs) in order to prove the aforementioned failure in the PWTM. While
carrying out calculations in the ICs, we also highlight the effect of the refractive index on the null
geodesics.

Copyright c© EPLA, 2015

Introduction. – As is well known, Hawking [1] the-
oretically proved that BHs could emit radiation (often
called HR), which implies that a BH would eventually
evaporate away, leaving nothing over time. According to
the principles of QM, complete information about a sys-
tem is encoded in its wave function. The evolution of
the wave function is determined by a unitary operator,
and unitarity implies that information is conserved in the
quantum sense. However, the combination of QM and
general relativity suggests that physical information could
permanently disappear in a BH, allowing many physical
(pure quantum) states to devolve into the mixed state of
HR. This phenomenon is called the BH information loss
paradox (the reader may refer to [2] for the topical re-
view), which underscores the apparent violation of uni-
tarity in the process of HR. Among the many attempts
at a resolution of this problem, the most promising one
came at the turn of this century, belongs to Parikh and
Wilczek (PW) [3]. The theorem states that when a virtual
pair is created just inside the BH horizon, the positive-
energy particle (real particle) can tunnel out the BH hori-
zon by a process similar to the QM tunneling, whereas the
negative-energy particle (antiparticle) continues to stay in
the BH. Conversely, as one would expect from particle-
antiparticle symmetry, if a virtual pair is created just out-
side the horizon, the antiparticle can tunnel inward, while
the real particle will eventually escape to spatial infinity.

In the PWTM, the conservation of energy is enforced.
Therefore, the mass of the BH must continuously decrease
while it radiates. Besides this, the information-carrying
particle is modelled as a thin spherical shell with energy
ω. Those shells could tunnel through the potential barrier,
following the principles of QM. In short, the whole tun-
neling process is considered semiclassically, and the trans-
mission coefficient is determined by the classical action of
the particle with the aid of the Wentzel-Kramers-Brillouin
(WKB) method [4]. As a result, the obtained spectrum
is not precisely thermal, and this also leads to the uni-
tarity of the underlying quantum theory and the conser-
vation of information [5]. On the other hand, so far, the
solution of the PWTM to the problem of the informa-
tion paradox has not convinced everyone, and hence it
has also remained debatable (one can see the extensive re-
view on the PWTM analysis [6] and references therein).
Furthermore, the PWTM has also extended to the HR
analysis of the non-asymptotically flat (NAF) BHs (see
for instance [7–9]).

The PWTM through the quantum horizon of a LDBH
geometry, which is the solution to the EMD theory [10–12],
and its extended theories [13], was studied in [9,14,15].
This BH is a NAF, four dimensional, spherically symmet-
ric and static dilatonic spacetime. It was shown by [14,15]
that in the proposed PW setup, there is no correlation
between different subsequently emitted particles, which
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reflects the fact that information does not come out con-
tinuously during the evaporation process. Then some
possible scenarios to conserve the information were given
in [14]. To this end, the back reaction effects were taken
into account. However, we believe that, in those stud-
ies [14,15], the main point that the PWTM does not yield
non-thermal radiation for a BH evaporating isothermally,
has not been stressed enough. Therefore, the fundamen-
tal motivation of the present study is to highlight that
the PWTM can not be the general procedure for having
non-thermal HR.

In this paper, in addition to the PGCs, we also employ
the PWTM within the ICs that has not been studied
before for the LDBHs. In particular, in the IC system
we represent in detail how the Hawking temperature
can be precisely obtained within the framework of the
PWTM, and how the PWTM is ineffective in achieving
non-thermal radiation.

Pure thermal radiation of the LDBH. – The ac-
tion of the EMD in 3 + 1 dimensions (4D) is given by

S =
1

16π

∫
d4x

√
−g

(
R − 2∂μφ∂μφ − e−2βφF 2

)
, (1)

where φ is the dilatonic field with a coupling constant
β and F 2 = FμνFμν in which Fμν is the electromagnetic
field or the U(1) gauge field. Static, spherically symmetric
NAF solutions in 4D were obtained in [16]. Among them
the LDBH [10], which corresponds to the case of β = 1, is
given by

ds2 = −fdt2 +
1
f

dr2 + R2(dθ2 + sin2 θdϕ2), (2)

where the metric functions and the fields are given by

f = r−1
0 (r − b), R2 = rr0, (3)

e2φ =
r

r0
, rt =

Q

r2
0

, (4)

in which b represents the event horizon rh, which is also
related to the mass. In general, the mass of a NAF BH
is computed via the Brown-York quasilocal mass defini-
tion [17]. Thus, one can compute the quasilocal mass of
the LDBH as

M =
b

4
. (5)

Furthermore, the another parameter r0 is related with
the charge Q of the LDBH through

r0 =
√

2Q. (6)

It is worth noting that both b and r0 parameters have
the same dimension in the geometrized unit system [18]
since the mass and the charge are represented by the [L]
geometrical dimension. The conventional definition of the
Hawking temperature TH [18] is formulated in terms of

the surface gravity κ as TH = κ
2π . For the metric (2), TH

becomes

TH =
κ

2π
=

∂rf

4π

∣∣∣∣
r=rh

, (7)

which yields

TH =
1

4πr0
. (8)

It is clear that the obtained temperature is indepen-
dent of mass, and consequently it is constant. Therefore,
ΔTH = 0, which means that the radiation is an isother-
mal process. Thus, HR of the LDBH is such a special
radiation that the energy transfer out of it happens at a
particular slow rate so that thermal equilibrium is always
satisfied. Furthermore, the extreme LDBH (M = b = 0)
is still a BH and possesses a clashed singularity-pointlike
horizon structure. Its singularity is null, and the delivery
time for an emitted signal from the horizon to an external
observer is infinite [11,12]. This extreme BH can be used
to describe the LDBH remnant [14]. Using the massless
Klein-Gordon equation, it is proven that such a remnant
cannot radiate, as expected, and its Hawking temperature
is zero. By taking the tunneling formalism with subse-
quent emissions and quantum gravity corrected entropy
into consideration, Sakalli et al. [14] also showed that the
entropy of the extreme LDBH can be derived.

In order to employ the PWTM and investigate the
Hawking temperature of the LDBH, one should choose
a suitable coordinate system which is not singular at the
event horizon. Along the line of PW [3], we firstly con-
sider the PGCs [19,20] by applying the following coordi-
nate transformation:

dT = dt +
√

1 − f

f
dr, (9)

where the coordinate T denotes the time in the PGCs,
which measures the proper time. Thus the line-element (1)
transforms into

ds2 = −fdT 2+2
√

1 − fdTdr+dr2+R2(dθ2+sin2 θdϕ2).
(10)

At r = rh (i.e., f = 0), the metric coefficients are all
regular, and indeed the coordinates are all well behaved
there. Since we think the particle as a spherical shell,
during the tunneling process, the particle does not have
motion in (θ, ϕ)-directions. Thus, the radial null geodesics
can be obtained as

ṙ =
dr

dT
= ±1 −

√
1 − r−1

0 (r − 4M), (11)

by which the upper (lower) sign corresponds to the out-
going (ingoing) geodesics. In [21], it was shown that the
ratio of emission and absorption probabilities for energy
E is

Pemission

Pabsorption
= e

− E
TH . (12)

In the WKB approximation [4], these probabilities are
related to the outgoing/ingoing imaginary part of the
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particle’s action (ImSout/ImSin) as follows:

Pemission = e−2ImSout , Pabsorption = e−2ImSin . (13)

Since the tunnelling ratio is expressed as

Γ =
Pemission

Pabsorption
= e

− E
TH = e−2ImS , (14)

where ImS denotes the net imaginary part of particle’s
action [22], we have

ImS = ImSout − ImSin. (15)

Moreover, the imaginary part of the action for the
ingoing particle is given by

ImSin = Im
∫ rout

rin

prdr = Im
∫ rout

rin

∫ pr

0

dp′rdr, (16)

where pr denotes the canonical momentum along the
r-direction [3]. rin and rout represent the radial distance
of the event horizon before and after the HR, respectively.
Since the BH shrinks in the process of the HR, rin > rout.
According to the PWTM, we should fix the total mass of
the system (M) and allow the BH to fluctuate. Also, we
consider the chargeless particle as a thin spherical shell of
energy ω. After taking into account the self-gravitational
effect, the mass of the BH decreases as M → M − ω.
Furthermore, Hamilton’s equation ṙ = dH

dpr
can be used

to transform variables from momentum to energy. Thus
eq. (16) becomes

ImSin = Im
∫ rout

rin

∫ M−ω

M

dr

ṙ
dH. (17)

Then, we can switch integration variables from H to the
particle’s energy ω. Letting H = M −ω′, we consequently
get dH = −dω′. So, we have

ImSin = Im
∫ rout

rin

∫ ω

0

dr

ṙ
(−dω′),

= Im
∫ ω

0

∫ rout

rin

dr

1 +
√

1 − r−1
0 [r − 4(M − ω′)]

(dω′) ,

= Im
∫ ω

0

∫ rout

rin

Ψin

r − 4(M − ω′)
dr (dω′) , (18)

where

Ψin = r0 −
√

r0 [r0 − r + 4(M − ω′)]. (19)

From eq. (18), one can see that there is a contour in-
tegral in the complexified r-plane picks up a residue at
r = 4(M − ω′). After deforming the contour around
the pole (pushing the pole into the upper half complex
r-plane), we get a prefactor of −iπ. For the detailed
description of residue calculus, one may refer to [23].
Evaluating the integral, we obtain

ImSin = 0. (20)

If we repeat the same procedure for the imaginary part
of the action for the outgoing particle, we have

ImSout = −Im
∫ ω

0

∫ rout

rin

Ψout

r − 4(M − ω′)
drdω′, (21)

in which

Ψout = r0 +
√

r0 [r0 − r + 4(M − ω′)], (22)

r-integral seen in eq. (21), has also a single pole at
r = 4(M − ω′). Therefore, one can get

ImSout = ImS = 2πωr0. (23)

The tunneling rate (14) for a particle outwards through
the horizon thus turns out to be

Γ = exp(−4πωr0). (24)

So the obtained temperature

T =
1

4πr0
, (25)

is nothing but the standard Hawking temperature given in
eq. (8). However there is an intriguing issue in this result:
Although the energy conservation is enforced, the spec-
trum of the radiation is still precisely thermal. According
to our knowledge, this (isothermal HR) is a unique case
for the PWTM that it could not modify the pure thermal
character of the HR.

Now, we want to verify our result in another regular co-
ordinate system. For this purpose, we consider the LDBH
within the IC system. The ICs have several interesting
features similar to the PGCs: The time direction is a
Killing vector and Landau’s condition of the coordinate
clock synchronization [24] is automatically satisfied. The
LDBH spacetime in the ICs has been recently studied by
Sakalli and Mirekhtiary [25]. By following the associated
transformation given in that reference,

r =
1
4ρ

( ρ + b)2 , (26)

we can express the LDBH metric in the ICs as

ds2 = −Fdt2 + G[dρ2 + ρ2(dθ2 + sin2 θdϕ2)], (27)

with

F =
1

4ρr0
( ρ − b)2 , G =

r0

4ρ3
( ρ + b)2 . (28)

Moreover, the event horizon in the IC is located at
ρh = b. From metric (27), one can obtain the radial null
geodesics as

ρ̇ =
dρ

dt
= ±

√
F

G
= ± 1

n
,= ± ρ( ρ − b)

r0( ρ + b)
, (29)

where n is the refractive index of the medium of the LDBH
geometry [25] and it is the deterministic parameter on the
imaginary part of the action for an outgoing (tunneling)
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particle:

ImSout = Im
∫ ρout

ρin

∫ ω

0

ndρ(−dω′),

= −r0Im
∫ ω

0

∫ zout

zin

[ ρ + 4(M − ω′)]
[( ρ − 4(M − ω′)]

dρ

ρ
(dω′). (30)

The ρ-integral has a pole at 4(M − ω′). However, one
must be cautious about a subtle point, which was pointed
out in [25–27] that when one deforms the contour of the in-
tegral around the pole, the semicircular contour in eq. (30)
gets transformed into a quarter circle. Namely, we obtain
a prefactor of −iπ/2 rather than −iπ. Thus

ImSout = πωr0. (31)

Similarly, we can obtain the imaginary part of action
for the ingoing particles as

ImSin = −πωr0, (32)

so that from eq. (15) we have

ImS = 2πωr0. (33)

This result is in agreement with eq. (23), and it leads to
the conventional Hawking temperature (8). In short, the
failure of the PWTM in revealing non-thermal radiation
is proven also in the ICs.

Conclusion. – In this article, it has been shown that
the original PWTM method cannot convert isothermal
HR to a non-thermal radiation. In particular, we have
used the LDBH, which radiates isothermally. In order to
use the PWTM, the PGCs and ICs, which are two well-
behaved coordinate systems, have been chosen. In both
coordinate systems, it has been straightforwardly shown
that, in spite of the energy conservation being taken into
account, the pure thermal character of the HR does not
modify. Namely, the original PWTM does not resolve the
information loss paradox in the LDBH spacetime. Hence,
it is our belief that seeking an alternative model to the
PWTM, beside the work of [14], which can produce the
non-thermal radiation from the LDBH will be useful in
the information theory. This is going to be our next prob-
lem in the near future.

∗ ∗ ∗

We thank the anonymous referee and editor for their
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