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Abstract In this paper, we construct an evolving wormhole in the dark matter halo. This work
is relevant since matter has two components: (i) cosmological part (only time dependent) and
(ii) wormhole part (only space dependent). In order to implement this, we use the Chaplygin
gas as an equation of state for the cosmic part and Navarro–Frenk–White dark matter density
profile as well as Thomas–Fermi profile in order to form a dark wormhole. The flare-out
condition of wormhole is also satisfied by violating the null energy condition for some
specific values of quantities. Furthermore, we reveal more interesting results regarding how
a topological deformation parameter α affects the evolving wormhole sourced with some
dark matter models based on the physically motivated shape function.

1 Introduction

A wormhole is a theoretical passage through space-time, which connects different points and
creates a shortcut for traveling in a space-time. Einstein and Rosen initially elaborated on
wormholes in 1935 using the theory of general relativity. Subsequently, the main contributions
on traversable wormholes were done by Morris, Thorne, and Yurtsever in the 1980s [1,2].
However, since then, no one has discovered a wormhole until now, it is completely based
on theoretical research. Understanding the mysteriousness of the nature of the universe is a
puzzle for humanity.

The existence of wormhole geometries is required to utilize the exotic matter, which
is one of the most debatable issues. In order to minimize the presence of exotic matter,
one is required to use modified theories or extra sources. An alternative approach can be
the utilization of thin-shell formalism, which was initially proposed by Visser. Moreover,
another important problem is to find a stable wormhole against perturbations. A singularity-
free system identifies a stable state and it prevents the wormhole from collapsing. Recently,
the studies of wormhole solutions have gained great interest [3–70].

On the other hand, theoretical and observational cosmology struggles to resolve the source
of inflation in the primitive universe and also the present cosmic accelerated expansion. Recent
experiments show that some enigmatic force may cause the accelerated expansion, which
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is known as the dark energy. Besides, it also highlights the ambiguous power of cosmology
[71,72].

Naturally, we assume that a wormhole can lead to an apparent failure of locality on the
background space-time in the primitive universe. If there was a wormhole in the early universe,
it would be inflated into at least the size of a human to allow time travel, with reference
to this, the early Roman studied the enlargement of the wormhole by inflation [4]. It was
proposed that amidst the inflation era, the wormhole had inflated. Furthermore, Kim extended
Roman’s idea and studied the cosmological properties in the Friedmann–Robertson–Walker
cosmologies with a traversable wormhole [3]. He has divided the content of matter into
two parts: (i) the cosmological part (only time dependent) and (ii) the wormhole part (only
space dependent). Subsequently, he studied the behavior of the scale factor and the wormhole
shape function in this context. After these seminal papers, the study of exact solutions under
assorted scenarios was extensively studied in order to understand the sophisticated picture
of cosmic evolution and wormhole. After the creation of this predicament, Cataldo et al.,
in a subsequent paper [29–32], studied various models of an FRW-like cosmologies using
the wormholes in different dimensions. He argued that it is possible to find normal matter
wormhole in the universe, and the evolving wormhole metric can cause the acceleration of
the universe.

In this paper, our main aim is to study evolving topologically deformed wormhole sup-
ported in dark matter halo, especially the Navarro–Frenk–White (NFW) profile [74], which
is a spatial mass distribution of dark matter as well as Thomas–Fermi (TF) profile, on the
other hand, the cosmic part sourced with the Chaplygin gas (CG) [6]. Different from the
previous studies, we investigate the effect of the topological deformation parameter α on the
evolving wormhole.

The remainder of this paper is organized as follows: In Sect. 2, we study the evolution
of the universe using the CG gas in the topologically deformed FRW space-time. Then, in
Sect. 3, we construct a dynamic traversable wormhole by solving Einstein field equations in
the background of the topologically deformed FRW space-time. In Sect. 4, we will discuss
the results.

2 Topologically deformed Wormhole embedded in FRW cosmology

In this section, we first consider the space-time metric representing a dynamic traversable
wormhole in a FRW universe as follows:

ds2 = −e2�(r)dt2 + R(t)2
(

dr2

1−kr2− b(r)
r

+ r2α2d�2
)

, (2.1)

where b is function of r and known as a shape function, α is the solid angle deficit (0 < α < 1)
as well as φ(r) is the lapse function. R(t) is the scale factor of the universe. Moreover, k
is the curvature of space-time with values +1, 0,−1. Note that R(t) → constant the static
Morris–Thorne wormhole is recovered.

To avoid the form of event horizon, these conditions should be satisfied: (1−kr2 − b(r)
r ) >

0, and b(r0) = r0 at the throat. Solving the Einstein field equation, Gμν = 8πTμν for the
above metric and φ(r) = 0, we obtain the nonzero components of the Einstein tensor with
energy density ρ, radial pressure Pr and lateral pressure Pt reduce to
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ρ = 1

8π

[
3

(
Ṙ2 + k

)
R2 + 1

R2

b′

r2 + −α2 + 1

r2α2R2

]
, (2.2)

Pr = 1

8π

[
−2

R̈

R
−

(
Ṙ2 + k

)
R2 − 1

R2

b

r3

− (α − 1) (α + 1)
(−kr3 + (

R2 + 1
)
r − b

)
r2R2α2

(
kr3 + b − r

)
]

, (2.3)

Pt = 1

8π

[
−2

R̈

R
−

(
Ṙ2 + k

)
R2 + 1

2R2

(
b

r3 − b′

r2

)]
. (2.4)

Note that radial tension τ = −Pr is equal to the negative radial pressure and H = Ṙ/R
is the cosmological Hubble parameter. Moreover an overdot stands for differentiation with
respect to t . Then, we use the following ansatz for matter parts to separate field equations in
two parts [3]

R2(t)ρ(r, t) = R2(t)ρc(t) + ρw(r), (2.5)

R2(t)Pr (r, t) = R2(t)Pc(t) + Pr
w(r), (2.6)

R2(t)Pt (r, t) = R2(t)Pc(t) + Pt
w(r). (2.7)

Note that above equations depend on R2, which shows that the wormhole affects the curvature.
Furthermore, we use the subscripts c and w to refer the cosmic and wormhole parts. With
the help of ansatz equations (2.5)–(2.7), we rewrite the Einstein equations in two parts as
follows

R2

[
8πρc − 3

(
Ṙ

R

)2

− 3k

R2

]
= b′

r2 − 8πρw + −α2 + 1

r2α2 = l, (2.8)

R2

[
8π Pc + 2

R̈

R
+

(
Ṙ

R

)2

+ k

R2

]
= − b

r3 − 8π Pr
w

− (α − 1) (α + 1)
(−kr3 + r R2 − b + r

)
r2α2

(
kr3 + b − r

) = m, (2.9)

R2

[
8π Pc + 2

R̈

R
+

(
Ṙ

R

)2

+ k

R2

]
= b − rb′

2r3 − 8π Pt
w = m. (2.10)

However, a new term arises corresponding to a linear potential. Note that l and m are
constants. The separation constants l and m are also determined by using the wormhole
matter distribution. On the other hand, for the cosmological part, the conservation laws
Tμ

ν;μ = 0 give us the following equations:

ρ̇c + 3H (ρc + Pc) = q

k
ṘR−3, (2.11)

where q = l + 3m. To investigate the cosmological part, we use the equation of state (EOS)
of CG as follows [6]:

Pc = −A

ρc
, (2.12)
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where A is constant. The solution of Eq. (2.11) for q = 0 by using Eq. (2.12) gives us the
cosmic density for Chaplygin gas ρc as follows

ρc =
√
B + A

R6 , (2.13)

where B is integration constant. For small R (ρc ∼ R6 � A/B), this solution reduces to

ρc ∼
√
A

R3 . On the other hand, for large value of R, ρc ∼ √
B, τc ∼ −√

B. Using Eqs. (2.8)–
(2.10) with l = −m = 0, we find the following FRW equations:

H2 =
(
Ṙ

R

)2

= 8

3
πρc − k

R2 , (2.14)

−2
R̈

R
−

(
Ṙ

R

)2

= 8π Pc + k

R2 . (2.15)

Then, using the cosmological matter distribution ρc ∼
√
A

R3 , and k = 0, we find the scale
factor R(t) for small value of R

R(t) =
(

3c + 2
√

6π
4
√
At

)
2/3

22/3 , (2.16)

which is for a universe dominated by dust-like matter. We also calculate the scale factor R(t)
for the large value of R, using the ρc ∼ √

B:

R(t) = e2
√

2π
3

4√Bt
, (2.17)

which is for an empty universe with a cosmological constant.
In the next section, we will check the possibility of evolving topologically deformed

wormhole supported various dark matter halos.

3 Construction of evolving topologically deformed wormhole with Dark Matter Halo

Now, we construct the evolving topologically deformed wormholes supported in the dark
matter halo. For this purpose, we use the wormhole part of Eqs. (2.8)–(2.10) by choosing
l = −3m

b′

r2 − 8πρw + −α2 + 1

r2α2 = −3m, (3.1)

− b

r3 − 8π Pr
w − (α − 1) (α + 1)

(−kr3 + r R2 − b + r
)

r2α2
(
kr3 + b − r

) = m, (3.2)

b − rb′

2r3 − 8π Pt
w = m. (3.3)

From Eqs. (3.1)–(3.3), we obtain that ρw + Pr
w + 2Pt

w = 0. We choose the one of
the pressure in the form of Pr

w = ωrρw , then the lateral pressure becomes barotropic
Pt

w = − (1 + ωr ) ρw/2. To check the maintenance of the wormhole with time, we study
the embedding space in a flat three dimensional Euclidean space using the t = const with
equatorial plane θ = π/2:

ds2 = dz̄2 + dr̄2 + r̄2 α2dϕ2 . (3.4)
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Taking the relations: r̄ = R(t) r , dr̄2 = R2(t) dr2, and constant time slice [4], we get

ds2 = R2(t) dr2

1 − kr2 − b(r)
r

+ R2(t) r2α2 dϕ2 . (3.5)

Then, it is obtained that [1]:

dz̄

dr̄
= ±

(
kr̄3 + b̄

r̄ − kr̄3 − b̄(r̄)

)1/2

= dz

dr
. (3.6)

Equation (3.6) reduces to

z̄(r̄) = ±
∫

dr̄

(
kr̄3 + b̄

r̄ − kr̄3 − b̄(r̄)

)1/2

= ± R(t)
∫ (

kr3 + b

r − kr3 − b(r)

)1/2

dr

= ± R(t) z(r) . (3.7)

The flare-out condition for the evolving wormhole become: d2r̄(z̄)/dz̄2 > 0 near the throat:

d2r̄(z̄)

dz̄2 = 1

R(t)

(
b̄ − b̄′r̄ − 2kr̄3) = 1

R(t)

d2r(z)

dz2 > 0 . (3.8)

where b̄′(r̄) = db̄/dr̄ = b′(r) = db/dr . For the constant R(t) = 1, the flare-out condition
reduces to the static wormhole at throat:

d2r̄(z̄)

dz̄2 = (
b̄ − b̄′r̄ − 2kr̄3) > 0 . (3.9)

3.1 NFW dark matter profile

NFW density profile is used to study dark matter halo for galaxies and clusters. Here, we
find a wormhole solution in the NFW dark matter density profile, by using ρw: [74]

ρw = ρs

r
Rs

(
1 + r

Rs

)2 , (3.10)

where Rs is known as radius of characteristic scale and ρs is the dark matter density when
the dark matter halo collapses. Using Eq. (3.10) within Eq. (3.1), and using the boundary
condition for the wormhole b(r0) = r0, the shape function b(r) is calculated as follows:

b(r) = 8πR4
s ρs(r0 − r)

(Rs + r0)(Rs + r)
− 8πR3

s ρs ln(Rs + r0) + 8πR3
s ρs ln(Rs + r)

+α2m
(
r3

0 − r3
) + r0 − r

α2 + r. (3.11)

For the condition of m = 0, shape function b(r) reduces to

b(r) = 8πR4
s ρs(r0 − r)

(Rs + r0)(Rs + r)

−8πR3
s ρs ln(Rs + r0) + 8πR3

s ρs ln(Rs + r) + r0 − r

α2 + r. (3.12)

For constant R = 1, we check the maintenance of the shape of the traversable wormhole,
using the following flare-out equation which must be positive and derived by violating the
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Fig. 1 Plot of the flare-out equation EQ versus r which must be positive

Fig. 2 Plot of the flare-out equation EQ versus r which must be positive

null energy condition (NEC) (ρ + Pr � 0) via Eqs. (2.2)–(2.3)

EQ = − r2

α2
(
b(r) + kr3 − r

) + r2

b(r) + kr3 − r
+ b(r) − rb′(r) − 2kr3 > 0, (3.13)

which is plotted in Figs. 1 and 2, showing that Eq. (3.13) is not satisfied on the whole domain
and bounded. Moreover, the evolving topologically deformed wormhole may be created
with normal matter, however, Eq. (3.13) will become negative and its lifetime can be said
that limited. It is clearly shown in figures that the topological deformation parameter α change
the stable region for the wormhole.
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Fig. 3 Plot of the flare-out equation EQ versus r which must be positive

3.2 Thomas–Fermi (TF) profile

Here, we construct a wormhole solution in the model of Bose–Einstein condensation (BEC)
dark matter (DM) which has more advantages on the small scales of galaxies. For this model,
density profile is [73]

ρTF = ρs
sin(kr)

kr
(3.14)

where ρs is the center density of Bose–Einstein condensation dark matter halo, and k = π/R
is the radius where the dark matter pressure and density vanish. Note that The BEC-DM
model supports much less dark matter density in the center regions of galaxies than the NFW
profile.

b(r) = 8ρs R2
(
R

(
sin

(
πr
R

) − sin
(

πr0
R

)) + πr0 cos
(

πr0
R

) − πr cos
(

πr
R

))
π2

+r3
0m + r0 − r

α2 − mr3 + r. (3.15)

For constant R, we check the maintenance of the shape of the traversable wormhole, using
the following flare-out equation which must be positive

EQ = − r2

α2
(
b(r) + kr3 − r

) + r2

b(r) + kr3 − r
+ b(r) − rb′(r) − 2kr3 > 0. (3.16)

Note that it is plotted in Figs. 3 and 4 showing that Eq. (3.16) is not satisfied on the whole
domain and bounded. Moreover, the evolving topologically deformed wormhole may be
created with normal matter, however, Eq. (3.16) will become negative and its lifetime can be
said that limited.

3.3 Wormhole supported Chaplygin gas and NFW dark matter profile

Here, we combine the Chaplygin gas for the large value of R with the NFW dark matter
profile ρw = ρc +ρNFW to obtain the shape function of the evolving topologically deformed
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Fig. 4 Plot of the flare-out equation EQ versus r which must be positive

wormholes. The new combined energy density becomes:

ρw = ρs

r
Rs

(
1 + r

Rs

)2 + √
B, (3.17)

then, the shape function is calculated as follows:

b(r) = −8πR4
s ρs

Rs + r0
− 8πR4

s ρs log(Rs + r0)

Rs + r0
+ 8πR4

s ρs

Rs + r
− 8πR3

s ρsr0 log(Rs + r0)

Rs + r0

+8πR3
s ρs log(Rs + r) − 8π

√
Br4

0

3(Rs + r0)

−8πRs
√
Br3

0

3(Rs + r0)
+ r4

0m

Rs + r0
+ Rsr3

0m

Rs + r0
+ r2

0

α2(Rs + r0)
+ Rsr0

α2(Rs + r0)

+8

3
π

√
Br3 − mr3 − r

α2 + r. (3.18)

For constant R, we check the maintenance of the shape of the traversable wormhole, using
the following flare-out equation which must be positive

EQ = − r2

α2
(
b(r) + kr3 − r

) + r2

b(r) + kr3 − r
+ b(r) − rb′(r) − 2kr3 > 0, (3.19)

which is plotted in Figs. 5 and 6 showing that Eq. (3.19) is not satisfied on the whole domain
and bounded. Moreover, the evolving topologically deformed wormhole may be created
with normal matter, however, Eq. (3.19) will become negative and its lifetime can be said
that limited.
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Fig. 5 Plot of the flare-out equation EQ versus r which must be positive

Fig. 6 Plot of the flare-out equation EQ versus r which must be positive

4 Conclusions

In this paper, we have obtained the evolving topologically deformed wormhole supported in
the dark matter halo and check its behavior of the wormhole in the inflation era. The solution
of the field equations given in Eqs. (2.2)–(2.4) has been divided into two independent systems
using the ansatz given in Eqs. (2.5)–(2.7). One of the Einstein field equations is for the static
gravitational field on the other hand; second one is for the time-dependent gravitational
field. We have used the first part of the field equation to construct evolving topologically
deformed wormhole by obtaining the shape function b(r) for different models of dark matter
halo, on the other hand, second equation which is the time-dependent part (Friedmann-like
with curvature k), have been used to study cosmological models within Chaplygin gas by
obtaining the scale factor R(t). To do so, we have used the Chaplygin gas as the equation
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of states in the cosmological part and three different dark matter models for the evolving
topologically deformed wormhole part such as NFW dark matter profile, Thomas–Fermi
profile, and combination of the Chaplygin gas with NFW dark matter profile. Then, the
shape functions of the evolving wormhole are derived for these three models separately, and
we have plotted their NEC conditions to show their maintenance. The effect of topological
deformation parameter α to present in the evolving wormhole metric is also explored. During
the inflation era, the amount of the exotic matter needed is decreasing for the evolving
wormhole as compared to the static wormhole. In Figs. 1 and 2, we have plotted the EQ
versus ‘r ’ with different values of the topological deformation parameter α to show the effect
of the α on the NEC. Second, we have constructed the evolving topologically deformed
wormhole using the TF profile for BEC-DM model. Figures 3 and 4 show that NEC is not
satisfied on the whole domain and bounded. Moreover, the evolving topologically deformed
wormhole may be created with normal matter, however, Eq. (3.19) will become negative and
its lifetime can be said that limited. Last, we have combined the Chaplygin gas with NFW
dark matter to obtain the shape function of the evolving topologically deformed wormhole.
Here, we have shown that NEC is in general satisfied for the range of parameters shown in
Figs. 5 and 6. Our results have shown that the topological deformation parameter α affects
the stable region for the wormhole.
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