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In this paper we investigate a warm inflation scenario of a locally rotationally symmetric Bianchi
I model using a background of modified Chaplygin gas. We determine the field equations and per-
turbations parameters, such as; the scalar power spectrum, scalar spectral index, scalar potential and
tensor to scalar ratio under slow roll approximation. We determine these parameters in a directional
of Hubble parameter during the both weak and strong logamediate inflationary regimes. These cos-
mological parameters show that the anisotropic model is compatible with WMAP 7 from the 2018
Planck observational data.
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I. INTRODUCTION

The standard universe model (hot big-bang cosmology) successfully explains the observations of a cosmic mi-
crowave background (CMB) but there are still some unresolved issues regarding the origins of the fluctuations,
horizon, flatness and magnetic monopole. Inflation is successfully resolved in current theory, and is a paradigm
for addressing the shortcomings of standard model issues [1-8]. Scalar field, as a primary ingredient of inflation,
provides the causal interpretation of the origin of large scale structure (LSS) distribution and observed anisotropy of
CMB [9, 10]. Inflationary standard models are classified into slow-roll and reheating epochs. In a slow-roll period,
potential energy dominates kinetic energy. All interactions between scalar (inflatons) and other fields are neglected:
hence the universe inflates [11]. Subsequently, the universe enters into a reheating period where the kinetic energy
is comparable to the potential energy. Thus, the inflaton starts an oscillation at about the minimum of its poten-
tial, losing its energy to other fields that are present in the theory [12]. After this epoch, the universe is filled with
radiation. According to the current universe model, cold inflation, rather than warm inflation is the ending stage
of the inflating universe [13, 14]. Warm inflation is the only way for thermal radiation production in the reheating
epoch. The formation of LSS and also formation of initial fluctuation can be produced by the thermal fluctuations
with the constant density which can be the affects of dissipation. The Hubble parameter should be less than decay
rate, according to the process of microscope the thermal particles can be produced. The radiation dominated phase
is easily entered into by the universe, when the inflating era can be stopped. Finally, the remaining matter particles
are produced [15, 16]. Many aspect of warm inflation are discussed in the literature [17]. The motivation of warm
inflation is completely different from their to its result. In the inflation era, the dissipative effects can lead to a friction
term in the equation of motion, and can also describe the dissipative coefficient. The cases of low, high and constant
temperature regimes are described in the dissipation coefficient [18-29]. The dissipation coefficient is discuss in re-
gards to the two cases, weak R << 1 and strong R >> 1 [30, 31]. In the scenario of a warm inflation era, the general
dissipation coefficient can be written as;

z
(T, ¢) =Co—=
¢
where T is the temperature of the thermal bath,¢ is the scalar field, C, is a dissipation microscopic dynamics and
z is an integer term for the different specific values s.t z = 3,1,0, —1 for low, high, and constant temperature. The
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value of z = 1 represents high temperature (SUSY-case) I o T, and z = 0 leads to normal temperature (exponentially
2

decaying propagator in the SUSY case) I' « ¢ and for z = —1 non SUSY case leads to decay rates is I' o %~ and for

z = 3 the most common form I' « gleads to a most common form for considering logamediate models [32]-[35]

According to the conditions of warm inflation, it can be existence of thermal radiation and temperature T >> H.
The thermal fluctuations is proportional to T and H. According to Chaplygin gas with an exotic equation of state
and with negative pressure can be described by

__ X
Pcg ch’
and
X
Pgeg = ——3—
Pieg

This equation can be extended in the form of generalized Chaplygin gas and — &, and A is a constant parameter. For
the value of A = 1, it is converted to the original Chaplygin gas. However, the Chaplygin gas is also modified the
equation of state,

Pmcg = gpmcg - /\L 1)

mecg

In Section 2 of this paper, we discuss the basic formalism of warm inflation in the view of MCG. In Section 3 and 4,
we discuss the weak and strong regime in the MCCG. Here, we also determine the explicit expressions of inflation
rate and decay rate, as well as the perturbation parameters: scale factor, tensor to scalar ratio, and scalar power
spectrum spectral index. We then discuss the graphical behavior in the context of the 2018 Planck observational
data. In Section 5 we summarize the results.

II. MODIFIED CHAPLYGIN GAS INSPIRED INFLATION

In this section, we discuss the general form of modified Chaplygin gas in the view of the dissipative coefficient for
the inflaton decay rate I', and we have formalism of equation of state in scenario of MCCG;

Pmcg = gpmcg - /\LI 2)
Pincg

where { and f are two constant parameters and 0 < A < 1. Also Pycq represent the pressure and pycq is the energy
density of Chaplygin gas. We find the energy density of Chaplygin gas from the equation of stress energy equation,
the scale factor a,

1

X ¢ =
Fmeg = <§+ 1" g<rh+2>(A+1)(Z+1)>

1
B ) 1— 7, pEs
= Pmcg0 <Xs + W) , 3)

T
positive integration constants. We use the differential age of old galaxies such that the oscillation peak parameter,
Baryonic acoustic, SN Ia data and growth index for the different and specific values (for best-fit) are obtained by
Xs = 0.8252, { = 0.0046 and A = 0.1905. These contribute to the two equations, energy density of matter p and
energy density of the radiation field p, in the background of inflation:

where ¥s =

According to Equation (2.2), we introduce some parameters: {s, and 5 . Here, A and 5 are

1 1
X (A+AZ+E+1) ) M ( X (A+AZ+1+§)> AT 1
(e ) o (e | @
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Consider a flat universe: then, the radiation field and inflation field ¢ are self interacting. We then would write the
Friedmann equation in the form:

1
2 K X (14A)(E+1) | AT

where H is the Hubble parameter, defined H = %, and ¥ = 87G . According to modified Friedmann equation, we
suppose that the inflation field ¢ and the radiation field in the scenario of flat universe yield:

o+ (1 +2)(pp + Py) = —T¢ = ¢+ (1 +2)¢+V = —T¢?, ©)
and
4
Py + g(m +2)Hy0, = T¢?, )
_ ¢?
o =5 +V(g) 8)
~ .2
Py=2-—vip) ©)

Here p,, is the energy density and P, is the pressure. Both functions are related to the same field. The similarly term
is, consequently, V(¢) a scalar potential. The condition of the energy density of the radiation field, if o, >> p,, then
Eq.(2.4)

1

2 ., _ K X (1+A+AL+) | T2
H ~ 770 ({1—1—5 Fo } )
1

. N 2 (AFALHI+])] T+
= 31 [5 1+ (V(cp)+2) } . (10)

+

By solving these equations in terms of the field using Eqgs.(2.5) and (2.9),

(2 + 41m)(—Hyp)

=L
(1 +2ﬁ1)H§] I+

5 _ - )
T x(htr 2L+ me+2)(1+R) x
—{-A-{
. - ~) (@)
2
vl X (14 2sm)H; , (1)
+1 K
we characterized a new parameter as follow:
T

R ————. 12
(i +2) (71 o

According to this condition pi, << 3 (i +2)Hap, by combining Eq. (2.6) and (2.10),

g2 3T (—Ha)
" 4(m+2)Hy  2x(Hy)(1+{)(1+R)

y (27 4+ 1)H2 | 55 [ (20 + 1)
K (i +2)2
{-A2-¢
- o\ —(1+A) (Tiaen)
Ll x ((1+2m)H2> ] | 13
¢+1 K
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The thermalized energy density is p, = C,T*. According to the Minimal Super Symmetric Standard model
(MSSM), C,, = %, 8+ = 228.75 and C,, = 70 [36], by solving Eq.(2.12):

1 =
1 _

;o [ 3T (—H,)(1 + 2it) (14 2m)H2 | @9
| 2kHyCo (71 +2)2(1+ {) (1 + R) K
r (A+1) et
- . 2\ (4+47+4AT+4A)
- 1‘511<(1+3<M)H2> ] | "

By considering Egs. (2.9), (2.10), and (2.13),

1
v (1+2m)H; x| 0 H,
= — - 4+ —
K 14¢ k(1+)(1+R)
~C

y (1+42m) | (1+2m)(H3) |
(m+2) K
(E+A(140)
. - —(14+A)7 ~ D a+A)
211 4 1) H?
x {1_511« K) 2) ] ) (15)

—z{

i 3(1 + 21i1)(— Ha) (1 +2m) (HZ) | 405D
2(Cy)Ha (111 +2)2(1 + ) (1 + R) K

()] ~ )

- 142 H2\ ~ T+1)(4+4A
% C(P(Plfz o X~<( + m) 2> ] , (16)

1+¢ K
In this era, the scale factor of logamediate inflationary model is given by,

a(t) = exp/ "™ £ > Oandg > 1 (17)

where g and f are two dimensionless constant parameter [37]. The next three sections, we will discuss the two cases
weak dissipative regime and strong dissipative regime.

III. THE WEAK DISSIPATIVE REGIME

In this case, the weak (R << 1) function can be converted in number of scalar field’s ¢ , by using Eq. (2.10) and
(2.16), we get

P(t) — o = —=, (18)

Where ¢, is a constant term of this integration , and @ is a constant term and 7|t] is a function of comic time is given
by, ( with condition ¢g = 0)
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3 s s s 1-H(-g)
. 2(1 +{)*Gamma [ Z3EEL8, ST (1)) 2040
T = =

¢
— Kt (1125()1(?3\) (5+/\+ gA)
(1+O)(1+A)
(—1+¢)(3+4A+Z(5+4A))
2(1+¢) ’
(243 +2A +27)) Logt] L3l

- s )

X

X

Gamma[l —

(—1+8) (3+4A+{(5+4A))

(—(2+3Z+2A+2§/\)Log[t]>1+ 2040
1+¢

Under the slow slow roll approximation, we formulate the Gamma function and also we find out the scalar potential

in terms of scalar field ¢ by using %2 < V(gp), we get

22 +1)g 1+A 7 (1+€>1(1+A)
V(p) ~ S , 19
@~ |(Emrme EE) 0
we can written as constant dissipative coefficient in terms of ¢ as follows,
r(p) = { 3(1 + 2171) ]4
7 )@+ 2D+ 272z )
2
( (1 + 21i1) f2g> > D6 gty s
K((F 1 [@g])2(n(z 1 [@g])2T8) vy
—2({+A(1+0))

L g (1+ 211) f2¢2 20)

14 TR AGE—2)
% (x((f-l[cﬁqo]))Z(zn(f—l[@go]))zu—g)) + ] S
In a cosmological time, the number of e-folds N is interpolated between two different time initial ¢; and final ¢, as

follows,
7 t
N = <m+2> : H,dt
3 t

1

= LD [ @ga)))* — (n(+ @g1]))e]. (@)

According to inflationary scenario, anisotropic model can be proposed by [38, 39]. Slow roll parameter determine’s
the degree of the anisotropy. Anisotropy during inflation cannot be completed neglected because slow roll parameter
is factual known as order of a percent. Dimensionless slow roll parameter can be expressed € and # by [40]. These
parameters presented in function of ¢ defined as,

B 3\ H
€= (ﬁz+2)H§-’ (22)

and

3 H,
= (2 ) 2 23
U <m+2) HyH, 23)

In inflationary scenario in terms of scalar filed slow roll parameter, it is a nearest of early and possible stage of e =1,

1 3 1\&t
§91=(D[T9XP (Mfg) ], (24)
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There are four ways in which scalar perturbations can be represented i.e scalar spectral indices and scalar tensor
power spectra 1, n and Pg[k|, Prk] According to standard scalar field, the scalar density perturbations can be
1

written as in the form of of P} = (m+2) H 3¢ is derive by 5¢? ~ (m+2)

obtained by Egs. (2.10) ,(2.13) and (2. 15)

H,T [41]-[43]. The scalar power spectrum is

1_, (B3z=11)(14+0)+2((2-3)+2(3~2) (1+{) (8=1)[(11-32) (1+{) +2{(3~2)]+(g=1) (z=3) (1+{)
Pr = Fo%=t (1+0)(4—2) (ln[t]) (1+0)(4—2)
(B3-2)({+A(1+0))
P (14 i) H2 (A1) @)= +) ,
1+ ( K > ’ (25)

This function is converted in the form of scalar field ¢,

(3z2-11) (1+0)+2{(z—3)+2(3—2) (1+)

PR = Fl(p%(’fil[(ﬁ(pﬂ) (1+0)(4—2)
(§=1)[(11-32) (14£) +20(3—2)]+(g—1) (1+£) (—3)
x (In(t7'[dg2])) (+0@-2)
()7 Feaa)
~ 1 2 H2 +1 1+
[1_ X~<( + 21it) 2) ] ) (26)
14+¢ K

where F; is a constant term then,

1

Eo_ (mirz)3<x(1+§)(m+2)> 3(1+21)C, i
! 3 2(1+ 21m) 2kCy (171 + 2)2 (1 +)

1+ 21 (3721)55) (11-32)(148) +28(3—2) +(2=3) (14¢)
[ } (f8)

(1+0)(4—2)
K

7

. (32-11)(14+0) +2{(2—3)+2(3~2)
Pr = B(T(G(N)F(GIN]) 04
(8=1)[(11-32)(1+£)+2{(3-2)]+(g~1)(z=3)

x (In(G[N))) (1+D)(4-2)

.aa»-n

(B=2)({+A(1+0))
P ((1+2ﬁ1)H2>_(A+1) 1) (A—2)(1+A)
2

1+ K ’ (@7)

8
—1

where &, and G[N] are defined by F, = Flw% and G[N] = [exp( (mliz) (75)f8)7 ]% . The scalar spectral index

ns is defined as ns = 1+ % , and by combining Eqn. (3.1) and (3.11), we get

(Bz—11)(1+0)+2(1+)(3—2) +2{(3 - 2)
fe(1+0)(4 —z)(Inft])s 1
(g =D[(11=32)(1+7) +~2§(3 —2)+(z=-3)(1+](g-1)
f8(1+¢)(4—2z)(In[t])8
+ np +ns, (28)

ng = 14

+

Where 71, and n3 are terms of above equation can be obtained by

1o 2(1+ 21m) (14 2) (fg)2\ 752
" \/f )( )

Kt?

4-— gr(m+2)(1+¢ K
y ( 1q1+3§ 765
(1)) TS
= 2 £2 52 2(g—1) +Hi+
) [1_ % <(1+2m)fg(ln[t]) ) ]

1+
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and
B —2% 3-z\ ,» =\ (1/ (20 +1))1+A
"o ((1+Z)2> (4—Z> (E+A01+0) =g
o (L)(3+2A)(g71)(t)2(1+/\) 1 X (t)>1-8) a
Inlt] 1+ \ (2 +1)f282

The scalar spectral index in the form of N

(B3z—11)(1+ Q) +2(1+)(3—2z) +2{(3 —2)
f8(1+{)(4—z)(In(G[N]))$1

(g —1)[(11-32)(1 +5)~+25(3 —2)+(z-3)1+0)(g—1)

f8(1+¢)(4—z)(In(G[N]))3

ng = 1+

_l’_
+ np+ng,

Where 1, and n3 are defined as

-
0 1—z 2(1+ 2m) (1+21)(fg)?\ ¢
to ¢f ( )

4- er (i +2)(1+) p
% 1+3(, (G(N))ﬁ%
—({+A(+D)
« |1- X (1+2m) f2¢2(In(G[N]))2&~1) —(A+1)7 2D (A
1+¢ x(G[NJ)2

and

ny = (( —Z)E ) (3—2) (C+A(1+0) (x/ (211 + 1)) 1+A

14¢)2) \4-z (fg)3+2A
o ((ln(éw]))mz;\)(g1)(G[ND2(1+A)

-1

& (x0T
1+ \ (2m+1)f28?

(29)

The tensor perturbations is written as in form of standard scalar inflation Ref.([44]), we may compute the tensor to

. P .
scalar ratioisr = %, we obtained,

—8(%)<m§%,

27T

(11-32) (1+0) +2(1+8) (3—2) +2L (z—3) +2(1+8) (4—2)

2(m+2)Kf2g2 z—1 =
r(qp) = W¢4—zt (1+0)(4-2)
(1-9)[(11-32) (1+0) +20(z=3) +(3—2) (14 ) +2(4—2) (1+)]
X (Int]) (+0)(E-2)

A(1+0)

(z=3)(E+A(140))
X (Kt2(ln[t])2(1—g)>l+/\] A+ (a2 [@+A)

142\ (2m+1)2¢2

(30)

@)
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Tensor to scalar ratio in terms of number of e-folds N,
2(ﬁ1 4 Z)Kfzgz 1 (11-32) (140) +2(144) (3—2)+2{ (2=3) +2(1+8) (4—2)
= 2T T 8 (#(GIND)) == (GIN 1+ (-2)
S-S (F(GIN))  (GIN)
(1-8)[(11-32) (140) +2{(2-3)+(3—2) (14+{) +2(4—2) (1+{)]
x (In(G[NJ])) A+0)-2)
o
5 5 21— 1+0)(4—2)(1+
o |1 & (*x(GINDZ(n(G[N])) (=g (32)
14+¢ (2m+1)f2g2
0.004 .
2
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Ns Ns
Figure 1:Plot of T/H verses ns { = 0.0046, ¥ = 0.8289, 71 = 1, ¢ = 15, f = 0.9805, x = 1
0.12F ]
5.x10710F 3 i
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4.x10710f i — Ce=2¥1072
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Figure 2; Plot of R verses ns ¢ = 0.0046, ¥ = 0.8289,m =1,¢g =15, f =0.9805,x = 1
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i — Ce=*10"!
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Figure 3: Plot of r versus #; { =0.0046, ¥ = 0.8289, 111 =1, g=15f=09805«x =1
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IV. THE STRONG DISSIPATIVE REGIME

In this section, we analyze the strong dissipative regime I' << (771 + 2)H, in the scenario of inflationary model
and discuss two special cases s.t z = 3 and z # 3. We formulated the solution of scalar filed as the function of cosmic
time by combining Eq. (2.10) and (2.15),

. . Tvt
¢(t) — Go = exp ( LL]) (33)
The term @ and function Trt] are defined as,
5+37 7487
¥ = 25 X 39 (L yaued (K ysaed
B -3 S < fg 142
(m+2)% xCy xCy
. (g— —2(1+4A) (—=1+£)(11+16A+{(13+16A))
i) = () S04 RDEL AL L) )
(1+1)(1+Q)
< Gamma[l — (-1+g)(11+16A 4: C(13+16A))
4(1+7)
, (9+8A+27(5 -F 4A))ln[t]](ln[t})%
4(1+7)

(—14¢) (11+16A+{(13+16A))

—(9+8A +2Z(5 + 4A))In]t] ) 10+
1+§)

Kt2 ln 2(1 8)
1—|—2m

; (5+30)(g—1)
81+0) Ol Inft] +28In[t]\ o0
+ 20 ) n[t]) S0+ ( o )
v Gammal BFH5E+5C+38g) _ (1+20)(Inlt])
8(1+¢) T 41+

The Hubble parameter as function of inflation field for z = 3 by using equation’s (2.15) and (4.1)

5 f8
) E TS n( TG o

In strong case, the scalar potential V() is given by

.. (1 + 2im) f2¢? 1+A
vig)~ [(K(‘Z"l[av)an)])Z(Zn(%—l[céln¢]))2(1—8)> C1+4¢

1
T+ (1+A)

(35)

We analyze the constant dissipative coefficient for special case z = 3 by using Eqs. (2.1) and (4.1), we obtain the
result as;

I(§) = BE(GIN))2(G(N)TD (In(G(N)))

X (MGG 22\
T+ f2(1+2m)g? !

—3(C+A(140))
00 (1HA)

(36)
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) 3
Where F3 = Cy [2xc3 (gffgg;f;iz)} ' ( 1+2m)f e ) Y is a constant term. By using eqn (2.1) and (4.1), the interaction

between the quantity of e-folds N is found as,

77 t
N = <m+2) Zszt
3 H

1+ 2 e ¥ R T
= DT T o)) — (7' @ n ) @)
According to the early universe, the thermal fluctuations provide the main source of scale density in scenario of
inflationary. For the first time, the power spectrum is introduced by [45], when the friction coefficient in the inflation
equation of motion depends on temperature. If the constant dissipative coefficient increases with temperature then
the always increases the scalar perturbations. We discuss the high temperature case by ([46, 47]). For the strong

dissipative regime R = W > 1. Where < 0 > is the scalar field fluctuation and can be written as < 6¢p >2~~

%I The new function is known as wave number and it can defined xr this function is also will be equal to xr =

22
(MTJFZ)FHZ = (m+2) \/% after following at these Eqs. (2.1) ,(2.12) and (2.14), this equations will be equal to the
scalar perturbation,
3 =
m+2)%H%r%T 2 k(1 OCHT (1 +2m> 10
3 0 3/ 4n(1+ 2m)

[N

Pr = ( "

X
)

3(2+0) - 1
I(1+7) T 3(1 + 2771) :| 8
R e e

—3(0+A1+7))

5 —(14A)T B+ I+A)
L X <(1+2m)H§> ]

B 14+¢ K (38)

Another form of scalar perturbation can be written as in scalar ¢ perturbation ¢;

_ (3+ZC) 3(8=1)(5+37)

Pr = E(*[@ng]) 0 (In(t H@Ing])) "0 ¢

—3({+A(1+7))

C 111 41 2(1—g) | 1] 22PN
{ ﬁ(r ( “dIn@))? (¥ [(Dlngo]) > )

(1+21) f2g2

where

3

GO0 1)
F - m+2 i 1+ 2im \ 80+0)
* 3 ( + 21)4rr K

11

235130 (1+ 27i1) 3
x (fg) M0 {2(m+2)xc7(1+§)}

The power spectrum written as a number of e-folds for z = 3

~3(3+20)

P = R(GIN) 7 (m(GIND) T exp (o))

—3(+A(1+0)

. [1_ X (x(cm)z cln )2“@)1“]W, (w0)

Considering the Egs. (4.7) and (4.5) ;

he = - 3(3+20) 3g-1G+30)
’ ! 4fg(1+€)(ln[t])8*1+8fg(1+§)(ln[t])g+ 1+m 41)
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where 111 and n, are the next two terms of spectral index

(20 42m)\ [ 3(+2m) ¥ (fo)TD
== (Ga7s) lEsmiansg)

(-g)(3+40) .
((2m:1)> - (i "oing))) T (2 @Ing])H0

1+¢ (1+2mm)f2¢2

and

3 A1 ~ Kﬁz 1+A . 5
. <§4+(1 ¢ 5@)) (1%) (((1;82);% ) (o n )20+

X (In(t~ 1@ 1n ¢]))C+2H1-8)

[1_ x <x<<f1[@1n¢1>2<%1[@1n¢}>2<1g>>]1
1+¢ (1+2m)f2g2

X

Similarly, can be written as number of e-folds of spectral index as given ,

3(3+20) L 3=1(+30)
4fg(1+)(In(GN])s~1 ~ 8fg(1+¢)(In(GIN]))s
+ np+np

ng = 1—

where

n

-3 (2;2112;) ) % [2KC73('7(711:22)W(? o+ é)] )

= 1-8)(3+4¢ 1420
<(2m;<+1)) T n(GINg) ST (GIND

—(E+HA(1+0)

1_ X (In(G[N]))2(1=8) (G[N])2k | | 5901
S 1+¢ (14 2m) f2g2

and

np =

~ K \1+A
AL (%}5@@ ) (GIN]2+

(1n(GINT)) P+2)0-)

X (KGINDA (GNP ]
14 (1+ 21m) f2g2

The tensor perturbations can be written as ¢

X

X

(1-29) (-1 (1+70)
r = (22U ()6 i)

3(t+A(1+0)

201 t2(1g) \ 1A S
1 X Kt (ln[tl) g
14+ \ (14 2m)f?g>

><1/VJ3

—(C+A(1+E)
[1_ X ((ln(f-l[céln¢]>>2<l-g><<f-l[céln¢]>2x>]8“*@“*”

11

(42)

(43)

(44)

(45)

(46)

(47)
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As the weak regimen the tensor to scalar ratio in terms of number of e-folds becomes
m+2 2x(fg)> (1-29) (¢=1)(1+70)
r = (—— G[N])*+0 (In(G[N 8(1+0)
(P TLE(GIND T (G [N))
i 3(§+A((1+§))
) 21— B(1+0) (1A
1+¢ (1+2m)f2¢?
7x107 3
0.012f 1 exio’f  —Ce=6*10® 1
Co=24*10
0.0101 1 o5x107F ———Cg=12¥10 ]
0.008 1 ax107f 1
(o
1T o006 1 3x107} ]
0.004 - 1 o2x10’F ]
0.002 1 1x10’¢L ]
0.000 £ L L — 0= PR PR P L Ll 1 P B |
1.00 1.05 1.10 1.15 1.00 1.02 1.04 1.06 1.08 1.10 112 1.14
N N

Figure 4: Plot T/H verses n; (left) and R verses n; (right) 7 =0.0046, ¥ = 0.8289, 11 =1, g=20,f=09805x =1

V. THE STRONG DISSIPATIVE REGIME (SPECIAL CASE z # 3)

In this case, we discuss the scalar field for a special case of a strong regimen for z # 3, we obtained

T[]

S(E) — oy — 49
P = po =4 (49)
where ¢ is another new scalar field which is defined as ¢[t] = 3%2433%2 and also @, and 1, [t] both function written
as,
z 1 z—4 5 4—z
g ~ 8 . 8—z+4(z 7
o = 250 (1) T i) (5 )
2% cs \1+¢ m+2" f8 1+2m
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and the constant term, where F; = C { > }

13

(8-1)(8+z((-1))

il = ((z(é(i)gi z)) <2(i(1?52> "

(-1(B+z({-1) z+2({- 1)177[”

8(1+70) ’ 41+70)

X

Gamma {1 +

N ( Xr(z—4)(C+A(1+7)) >
(14 21m)(fg)2(1+ A) (6 +z + 81 +20(5+4A))3

3 8+(=1+()z—16(1+{)A+g(8+2z—z+16A+16{(1+1))
(2) 8(1+7)

(16(1+A)+z) —g(8+z+16A)

4(1+70)
(24 —z+16A+ f(z—16(1+ 7)) (64 2z +8A +27(5+4A))In]t]
8(1+10) ’ 4(1+0)

_ 8 (=140)z+g(8—{(~16+2)+2)
(Inlt)) 81+

X

X

Gammal|

]

X

8+(=1+)z—16(1+{)A+g(8+2—Lz+16A+16{(141))

" (_ (64+z+8A+20(5 +4/\))ln[t]> 8(1+0)
1+¢

x(In[t])@29 \"
((1 +2ﬁ1)(fg)2>

According to this case, The definition of Hubble parameter is define,

5) — f8
)= (G Tiag) n(e Tag]) e 0

For special second case z # 3, The Potential in this form

1
(140)(1+4A)

AN (1+2m)f2g2 1+A 7
= [(K(G[N])z(ln(G[N])z(lg)) C1+¢ (51)

For this case, the dissipative coefficient after the solved can be written as,

22{(1-8)~2(2—-8)(1+)

[(¢) = Fup 2(t; Yo Ing)) 4050

(x0T
{+1 f2(2m+1)g2

—2({+A(1+0))
(1+0) (470 +4)

(52)

3(1+2m)ag(1-g) 14 ((1+2m)f2g2) iy
K

2(42)xCy (147)

For this case, The number of e-folds ,we get

N =7 ("32) [ @t g2 - (5 en n pr)e]. 3

In special second case for z # 3, The Power Spectrum can be found that

3(1-2) (§=D[(6=32)(14+30)-8(1+0)] 1 2(6-3z)(1+20)-8(1+L)
Pr = Fu¢ 2 (ln[t]) 8(1+0) n 8(1+7)

6—32)({+A(147))

(
N 5 2(1-¢) 1+A] 81+ (d—2)(1+A)
{1 X (xt (1n(1) ) ] -

T+ \ (m+1)f282
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Where,

- (6-32) 3282
(m+2)17 k(1+0) o (1+2m w0 :
3 2(1+2m) @ K

Fln:[

[(1+30)(6-32) —8(1+{)]

x (fg) S0 (55)
Consequently, The power spectrum is defined number of e-folds, we get

3(1-2) (=DI[(6=32)(A+30)-8(1+)] 1 2(6=32)(1+20)—8(1+()

Pe = Fu(@(GIND) T (m(GIND) 0 () 0

(6-32)({+A(1+0)

X <K<G[NJ>2<ln<G[N]>>2<1—g>>1+A]wz)w

1= 1+¢ (2 + 1) f242 (56)

Where 7, is a constant term and is defined by v, = (%)¥ and also written as of scalar spectrum index in scalar
field

(g —1)[(6 —32)(1+3%) —8(1+7)]
8fg(1+{)(In[t])s
2(6 —3z)(1420) —8(1+0)

ns = 1+

- = + 11y + 1oy, 57
8fg(1+{)(Inft)s 1 o 7)
where, The terms 1y, and n,,, are
I E-ICE) (2(1+2m)>5 s(1+2m)fg | °
T T ) \kaw D) [2e+2)(14)
9
(142) 22\ 5078 =5 12— n(140)
(e g o

(z=4)(+A(1+0))

. . - _ 1+A] 8(1+g)(1+A)
(1-4)(1-0) 2 2(1-g)
X (t) 8040 [1 -7 Xg” (Kf (Int]) ) ]
+

(1+ 21m)a2g>

and
(6—32)% [(+A(1+7Q)]
4140 (1+0)(fg)>+»
1

(k/ (1 +20m))" (t)z(H’\)(W)(g*l)(?’JrZ?\)

S LOR 0 oA
1+ (A t2m) g2

In this case z # 3 and the scalar spectral index which can be expressed in number of e-folds,

(g —1)[(6 —32)(1+3%) —8(1+7)]
8fg(1+¢)(In(G[N]))$
2(6 —3z)(1420) —8(1+0)

_ 8fg(1+§)(ln<G[N]))g,1 + N1y + 1oy, (58)

oy = —

X

-1

X

ns = 1+
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where 1y, and n,,, are
o [sa-2) (2(1+2m)>2 3(1+2m)fg | °
" 2C? K(1+0) 2Cx (i +2)(1+0)
¢
(1 + 21) 24> &8 (=)L) -m(1+0)
X (K) $2 (In(G[N])) 8(1+0)
1427 GEAERAL)
o X _ (®(GIN])*(In(G[N]))*(~8) B
< (GIN]) T [1- A GIN))
1+¢ (14 2mm)a’g
and
nyy = _(6=3F L+ A1+0)]
n - = =
4(1+0) A+0)(f8)*+
1
2mm)) '+ 2140 (= _y(s=1)(3+2)
<6/ (1 2m) (GNP ()
1427 1
& (<(GINDA(n(GIND) -9\
1+¢ (14 21) f2g> -
In the second case, similarly we also find the tensor-to-scalar ratio,
_ 2x(fg)? Mm+2 s
"= 7T2F, ( 3 )9
(1-g)[(6=32) (30 +1)~16(1+{)] 2(142£)(6—32) ~16(1+{)
X (In]t]) 8(1+0) (t) 8(1+0)
_ R (K@ (Inf) e (+)1+2) .
1+¢ (1 +21) f2¢2 ’
Similarly, this equation can also be written as number of e-folds
. 2K(fg)2<ﬂ7l—|—2)A3(z—1)
- mF 3
(1-8)[(6-32)(30+1)~16(1+0)] 2(1428) (6-32)-16(1+0)
x (In(G[N])) 8(1+0) (G[N]) 8(1-0)
_ X (x(GIND(In(G[N])) & B )
1+¢ (1+ 21) f2g> ~

VI. CONCLUSION

In this present work, we have studied the warm anisotropic inflationary universe with modified Chaplygin gas in
the background of locally rotationally symmetric Bianchi I universe model. We evaluate the inflationary expansion
of universe via constant dissipative coefficient I = C,T?/¢*"!, where z = —1,0,1 and 3. We study the possible
relaization of an expanding logamediate scale factor in weak and strong dissipative regime. Under the slow roll
approximation, we evaluate the scalar power spectrum, scalar power index and tensor to scalar ratio. For both
regimes, we have found the constraints on several parameters, considering the Planck 2018 data, together with
the condition for warm inflation T > H, and the condition for the weak I' < (m + 2)H, (or strong I' > (m +
2)H,) dissipative regime. For the weak dissipative regime, we have obtained the constraints on the parameters of
our model, only from the conditions T > Hj, which gives an upper bound, and T < H,, which gives a lower
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bound. This is due that fact that the consistency relation r = r(n5) does not impose constraints on the parameters by
considering two-marginalized constraints at 68% and 95% C.L. For the strong dissipative regime, we have found the
constraints on the parameters from the Planck 2018 data, through the consistency relation r = r(n5), with condition of
inflation T > Hj. According to recent observational Planck data, the strong dissipative regime for special case z = 3,
the conditions of warm inflation T > H; model evolves under the regime and for two-dimensional marginalized
constraints on the parameter r and n;. Moreover, the constant dissipative parameter C, by the set of upper and
lower limit. Finally, the values of z = —1 and z = 0 does not satisfy the condition of warm inflation in the case of
strong dissipative regime and the plot of r verses n; can not be draw in a strong case, since the predicted value of
spectral index is always greater than unity. It is interesting that the recent observational data is also compatible with
our inflationary dynamic model for specific value of tensor to scalar ratio » ~ 0. Finally, it is concluded that warm
anisotropic inflationary scenario can be successfully discussed in the context of MCG and Bl models with particular
forms of generalized dissipation coefficient. In weak dissipative regime, we have obtained consistent results when
dissipation coefficient corresponds to super-symmetric models (z = 1) while this consistency is preserved in strong
dissipative regimes for z = 3. In case of non-supersymmetric models (z = 1), the warm inflationary condition is
violated in both weak and strong dissipative regimes.
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