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The principal objective of this project is to investigate the gravitational lensing by
asymptotically flat black holes in the framework of Horndeski theory in weak field limits.

To achieve this objective, we utilize the Gauss–Bonnet theorem to the optical geometry of
asymptotically flat black holes and apply the Gibbons–Werner technique to achieve the
deflection angle of photons in weak field limits. Subsequently, we manifest the influence
of plasma medium on deflection of photons by asymptotically flat black holes in the
context of Horndeski theory. We also examine the graphical impact of deflection angle
on asymptotically flat black holes in the background of Horndeski theory in plasma
medium as well as non-plasma medium.
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1. Introduction

The anecdote of a falling apple fostering Newtonian gravity has been imparted on
generations since the year 1666. For centuries since then, physicists have believed
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that the gravitational force is related to the ratio of the product of the interacting
masses and the square of their separation through a proportionality constant. This
“Gravitational” constant was given an accurate value via the Cavendish experi-
ment. In 1910s, Einstein’s general theory of relativity transpired suggesting a finite,
spherical universe in which the Gravitational constant, G was discerned to exhibit
a dependence on mass distribution and size of the universe, so as to account for the
inertial forces [1].

A decade later, Hubble’s observations confirmed the Big Bang Theory, essen-
tially establishing that the universe was expanding, and potentially infinite. The
extent of the universe that can be observed is limited to a maximum distance
determined by the time that light takes to reach Earth from the observable edge.
In other words, mass distribution and the size of the universe change with time,
and, hence, so does the gravitational constant, G [2, 3]. This discrepancy led to
the speculation that the effect of G could rather be a scalar field, than a constant
number. According to Einstein’s formulation, the so-called metric field contains the
influence of gravity, and mathematically known as a tensor. Therefore, the idea of
consolidating a scalar field due to mass distribution with the metric is called as the
scalar-tensor theory [4–6].

One such generic gravitational scalar-tensor theory is the Horndeski theory [7].
Defined for a four-dimensional spacetime, the scalar field is incorporated as a new
degree of freedom to formulate the Lagrangian of the system, begetting second-
order field equations of motion. This notion is inspired from the Lovelock theory of
gravity: relaxing Lovelock’s assumptions not only exercises the scalar–tensor theory,
but also extends Einstein’s theory of gravity.

The kinetic term of the Lagrangian characterizes the quadratic derivative of the
field and depends on the Lovelock tensor, which is proportional to the Einstein
tensor, Gμν, encompassing non-minimal coupling between the scalar field, ϕ and
curvature [8]. Hence, the action principle for a 4D spacetime (n = 4) becomes [9, 10]

I[gμν , ϕ] =
∫ √−g d4x

[
k(R − 2Λ) − 1

2
(αgμν − ηGμν)∇μϕ∇νϕ

]
, (1)

where k ≡ 1/16πG. Here, the first term accounts for the scalar field with non-
minimal coupling for matter owing to the Ricci scalar, R, and the second term
accounts for the Einstein–Hilbert action for gravity owing to the cosmological con-
stant, Λ. Values of the parameters α and η are governed by the positive energy
density of matter field.

The above equation is the reduced form of the action analyzed with standard
matter, matter fields and non-standard scalar field [10]: implementing assump-
tions — the geometry is static, spherically symmetric and homogeneous with the
scalar and metric fields obeying this symmetry in an asymptotically flat space-
time — renders this equation as the limiting case of Horndeski theory. Equation (1)
is the foundation of the ensuing work.
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When the gravitational force of a massive object bends the trajectory of light
that originated from a distant object behind it, gravitational lensing occurs. This is
a consequence of general relativity used to understand the universe, galaxies, dark
energy and dark matter [1]. Various authors studied the gravitational lensing by
black holes, wormholes, cosmic strings and other objects since the first gravitational
lensing observation by Eddington [11–37].

In 2008, Gibbons and Werner cleverly showed that there is an alternative way to
obtain the weak deflection angle for asymptotically flat optical spacetimes using the
Gauss–Bonnet theorem [38]. Later, Werner managed to derive the weak deflection
angle of stationary spacetimes using the same [39]. Note that both considered the
source and the observer to be placed at asymptotic regions. Next, Ishihara et al.
showed that it is also possible to use this method for finite-distances (large impact
parameter cases) [40]. Then, Crisnejo and Gallo showed that the plasma medium
deflects photons [41]. For more recent works, one can see [42–82].

Multi-messenger astronomy constrained the scalar-tensor theories substantially
through the detection of GW170817. The arrival times of the gravitational waves
and their electromagnetic counterparts from the NGC 4993 galaxy were observed
to have fluctuated by less than a minute when two neutron stars spiralling each
other ultimately merged. The speed of the gravitational wave is seen to be affected
when the scalar field is coupled to curvature. To be coherent with these observa-
tions, quintic and quartic models are neglected restricting our calculations to linear
observables. Note that Horndeski theories have a serious flaw, related to their pri-
mordial tensor spectrum, namely, the gravitational wave speed is not equal to unity.
Theories of this sort are problematic. For example, the detection of GW170817 elim-
inates any late-universe application of Horndeski theory [83]. These theories can be
amended by using a new framework developed in [84], firstly developed in [85] and
improved by [86–88]. The results inferred by these studies are, however, beyond the
scope of this work.

In this paper, we intend to study the deflection angle of the black holes governed
by Horndeski theory using the Gauss–Bonnet theorem to test the validity of the
modified gravity theory. To compare, we consider the idea of the deflection angle of
massive particles in a plasma medium from a black hole. Our main aim is to check
the effects of Horndeski theory on weak deflection angle.

This paper is organized as follows. Section 2 reviews some basics on asymptot-
ically flat black holes, computes the Gaussian optical curvature and calculates the
deflection angle using GBT. In Sec. 3, we calculate the deflection angle in plasma
medium, followed by concluding remarks in the last section.

2. Calculation of Photon Lensing for Asymptotically
Flat Black Holes

When the action comprises of a cosmological term, a new asymptotically locally flat
black hole can be found. Here, the kinetic term (constructed with Einstein tensor)
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of the scalar field alone is considered to yield the matter term taking α = 0 in the
action, which reduces the latter to

I[gμν , ϕ] =
∫ √−gd4x[k(R − 2Λ) +

η

2
Gμν∇μϕ∇νϕ]. (2)

In [84], the authors have obtained an equation applying the slow-roll conditions
to incorporate the consequences due to the experimental findings of GW170717,
further simplified by [88]: the action appears to acquire an extra term equal to ϕG
where G = R2 − 4RμνRμν + RμνρσRμνρσ .

Setting the integration constant that emanated from the first integral of the field
equation to zero, the following metric defines a solution of the system for K �= 0 [9]:

ds2 = −H(r)dt2 +
15(Λr2 − 2K)2

K

dr2

H(r)
+ r2dΣ2

K,2, (3)

where dΣ2
K,2 = dθ2 + sin2 θdϕ2 and

H(r) = (60K2 − 20ΛKr2 + 3Λ2r4) − μ

r
. (4)

If Λ disappears, the scalar field vanishes reducing the solution to that of the topo-
logical Schwarzschild solution in a flat spacetime, representing a black hole only in
a spherically symmetrical scenario [9]. By taking Λ = 0,

ds2 = −H(r)dt2 +
60K

H(r)
dr2 + r2dΣ2

K,2, (5)

and

H(r) = 60K2 − μ

r
. (6)

Here, μ is the integration constant and can be explicate as the black hole mass.
Now to acquire the null geodesics (ds2 = 0), the black hole optical spacetime in
equatorial plane θ = π/2 is written as

dt2 =
60K

H(r)2
dr2 +

r2

H(r)
dϕ2, (7)

along with optical metric ĝopt
ab = gab

(−gtt)
, according to the Fermat principle, the

geodesics are spatial rays of light. The Gaussian optical curvature can be determined
by allowing use of the description for the two-dimensional (2D) optical metric given
in Eq. (7)

K =
RicciScalar

2
, (8)

in which R for optical metric is the Ricci scalar. Following the computation of
non-zero Christoffel symbols, we obtain the following equation particularly for the
Gaussian optical curvature of the optical metric

K = −Kμ

r3
+

μ2

80 Kr4
+ O(r−5). (9)

Let us recall the GBT for a 2D manifold. In this regard, we consider a regular
domain DR aligned by 2D surface S with Riemannian metric ĝij , along with its
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piece-wise smooth boundary ∂DR = γg ∪ CR, then GBT permits a connection
among the geometry and topology in terms of the subsequent relation [38]∫ ∫

DR

KdS +
∮

∂DR

k̂dσ +
∑

j

θ̃j = 2πX (DR), (10)

where K is the Gaussian optical curvature, θ̃j is the exterior angle at the jth vertex
and σ is the line element along the boundary DR. Let γ be a smooth curve in the
same domain. Thus, γ̇ comes to be the unit speed vector [38]. It is well known
that for regular domain the Euler characteristic XDR = 1, while k̂ is termed as a
geodesic curvature and is defined as

k̂ = gopt(∇γ̇ γ̇, γ̈), (11)

having the unit speed condition gopt(γ̇, γ̇) = 1, where γ̈ is the unit acceleration
vector perpendicular to γ̇. In the case of R → ∞, the respective jump angles
are taken as π/2 (in short, the sum of angles corresponding to the observer and
the source: θ̃O + θ̃S → π). Using the fact that the geodesic curvature offers no
contribution i.e. k̂(γg̃) = 0, we shall pursue a contribution by the virtue of the
curve CR computed as

k̂(CR) = |∇ĊR
ĊR|. (12)

Let us consider CR := r(ϕ) = R = const, while R endows the distance from the
coordinate origin. The radial component of the geodesic curvature is stated as

(∇ĊR
ĊR)r = Ċϕ

R(∂ϕĊϕ
R) + Γr

ϕϕ(Ċϕ
R)2. (13)

Using the above equation, we note that the first term vanishes, then the second
term can be obtained using the unit speed condition. Then, k̂ is calculated as
limR→∞ k̂(CR) = limR→∞ |∇ĊR

ĊR| → 1
R . We take the large limits of the radial

distance, and find: limR→∞ dt → R dϕ. Hence the deflection angle can be calculated
in the form [38]

Θ = −
∫ π

0

∫ ∞

b/ sin ϕ

KdS, (14)

where b is the impact parameter, a dimensionless quantity that endorses the straight
line approximation in which the light ray is assumed to be expressed as r = b/ sinϕ

at zeroth order in the weak deflection limits [38]. This equation inscribes the global
impact on the lensing of particles on account of the fact that one has to integrate
over the optical domain of integration outside the enclosed mass. Now, by using
Eq. (9) into Eq. (14), we obtain the weak deflection angle for flat black holes in
Horndeski theory to be

Θ =
2Kμ

b
+

μ2π

320Kb2
+ O(μ3). (15)
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Fig. 1. Θ versus b.

2.1. Graphical analysis

This segment is dedicated to review the impact of deflection angle Θ on asymptot-
ically flat black holes graphically and to illustrate the physical eminence of these
graphs to examine the influence of curvature constant K and impact parameter b

on the deflection angle by analyzing the stable and unstable state of the black hole.

2.1.1. Deflection angle versus impact parameter

For μ = 2, the deflection angle is Θ plotted against the impact parameter b for
different values of the curvature constant K in Fig. 1.

• Figure 1 demonstrates the influence of Θ with respect to b for different values of
K. One can examine that for small b deflection angle increases but as b increases,
the deflection angle decreases for fixed μ. So, for stable behavior we choose the
domain b ∈ [1, 15].

Figure 1(a) illustrates graphically the impact of Θ with respect to b by varying
K. For negative K, we obtain locally hyperbolic behavior but for K = 0 the
behavior is locally flat. If there is small change in the variation of K, deflection
angle is exponentially decreasing.

• Figure 1(b) shows that with the increase of K, Θ decreases gradually as it tends
to positive infinity. We obtain physical stable behavior just for K ≥ 0.5.

3. Photon Lensing in a Plasma Medium

In this section, we investigate the effect of plasma on photon lensing by asymptot-
ically flat black hole in Horndeski theory. The refractive index for a flat black hole
is stated as follows [41]:

n(r) =

√
1 − ω2

e

ω2∞
H(r), (16)
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then, the corresponding optical metric illustrated as

dσ̃2 = gopt
jk dxjdxk =

n2(r)
H(r)

[
60K

H(r)
dr2 + r2dϕ2

]
, (17)

where, the metric function H(r) in the optical metric is given by

H(r) = 60K2 − μ

r
. (18)

The corresponding optical Gaussian curvature is calculated by using Eq. (8)
to be

K = −μK

r3
+

μ2

80Kr4
+

90μK3

r3

ω2
e

ω2∞
− 9μ2K

4r4

ω2
e

ω2∞
− 3μK

r4

× (60K2r − μ)
ω2

e

ω2∞
+

μ3

80Kr5

ω2
e

ω2∞
+

3μ2(60K2r − μ)
80Kr5

ω2
e

ω2∞
. (19)

Then the geodesic curvature approaches 1 for R goes to ∞ as

lim
R→∞

k̂g
dσ̃

dϕ

∣∣∣∣
CR

= 1. (20)

Using the straight line approximation given by r = b/ sinϕ as R → ∞, GBT can
be stated as [41]

lim
R→∞

∫ π+Θ

0

[
k̂g

dσ̃

dϕ

] ∣∣∣∣
CR

dϕ = π − lim
R→∞

∫ π

0

∫ R

b/ sin ϕ

KdS. (21)

After simplification, we obtain

Θ � μ2π

320b2K
+

μ3

90b3K

ω2
e

ω2∞
+

2μK

b
− 3μ2Kπ

4b2

ω2
e

ω2∞

+
180μK3

b

ω2
e

ω2∞
+ O(μ4, K4). (22)

The above results show that the photon rays are moving in a medium of homoge-
neous plasma.

3.1. Graphical analysis

This section is focused to investigate the graphical effect of deflection angle Θ on
asymptotically flat black holes in a plasma medium. Further, we exemplify the
physical implications of these graphs to analyze the effect of curvature constant
K, ωe

ω∞
and impact parameter b on deflection angle by analyzing the stable and

unstable state of black hole.
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Fig. 2. Relation between Θ and impact parameter b.

3.1.1. Deflection angle versus impact parameter b

This section offers the examination of deflection angle Θ with respect to impact
parameter b for different ranges of curvature constant K, ωe

ω∞
, for fixed μ = 2. For

simplicity, here, we suppose ωe

ω∞
= η.

• Figure 2 depicts the influence of Θ with respect to b for varying η and for fixed
μ = 2 and K = 1.

(1) Figure 2(a) represents the behavior of Θ with respect to b for small variation
of η. For η = 0.005 the deflection angle decreases, it is observed that the
behavior is same for η = 0.005 → 0.01 and 0.01 → 0.1 there is small change
in deflection angle but greater than 0.1 the deflection angle actually increases.

(2) Figure 2(b) shows that the deflection angle gradually increases by
increasing η.

4. Conclusion

In this paper, we accomplished an extensive analysis of deflection angle of light
by asymptotically flat black hole in the background of Horndeski theory in weak
field approximation. In this regard, we employ the optical geometry of asymptoti-
cally flat black hole in Horndeski theory. Thenceforth, we have utilized the GBT by
using straight line approximation and computed the deflection angle procured by
the leading order terms. The obtained deflection angle is evaluated by integrating
a domain outside the impact parameter, that depict the globally impact of gravi-
tational lensing. Additionally, we have found the deflection angle of photon lensing
for asymptotically flat black hole in a plasma medium. Also, we have analyzed the
influence of the impact parameter, the curvature constant and the plasma term on
the deflection angle of the photon lensing by asymptotically flat black hole in the
context of Horndeski theory graphically. We infer that the proposed deflection angle
increases by decreasing the impact parameter, the mass term μ is found to decrease
the deflection angle, and increasing the curvature constant is seen to decrease the
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deflection angle gradually. Moreover, if we disregard the impact of plasma medium,
( ωe

ω∞
→ 0), in the following equation:

Θ � μ2π

320b2K
+

μ3

90b3K

ω2
e

ω2∞
+

2μK

b
− 3μ2Kπ

4b2

ω2
e

ω2∞

+
180μK3

b

ω2
e

ω2∞
+ O(μ4, K4), (23)

we obtain the weak deflection angle for non-plasma medium case:

Θ =
2Kμ

b
+

μ2π

320Kb2
+ O(μ3). (24)

The observations that follow from the Horndeski theory and its mathematical impli-
cations include determining observables such as angular positions, separation, mag-
nification and fluxes: a case study of astrophysical applications for Sagittarius A*
and M87 can be found in [11]. Additionally, distinct researches include linear Horn-
deski theories to study dark energy and gravitational waves [89], and Horndeski
gravity to study dark matter [90]. Our results can be extrapolated to correct for
quantum effects while determining the observables, thus, increasing precision, how-
ever, the resulting calculations to attain it are beyond the scope of this work.
Furthermore, it will be interesting to study the weak gravitational lensing of black
holes in MAXWELL f(R) gravity theories as well as in fourth order gravity theo-
ries [91–93] and non-Minimal Horndeski-like theories (the gravitational wave speed
can be equal to unity in natural units, when an appropriate Gauss–Bonnet term is
added in the action) using the GBT in future [84].
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[65] K. Jusufi, A. Övgün, J. Saavedra, Y. Vásquez and P. A. González, Deflection of
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