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In this paper, we investigate light bending in the spacetime of regular black holes with cosmic strings in
weak field limits. To do so, we apply the Gauss-Bonnet theorem to the optical geometry of the black hole;
and, using the Gibbons-Werner method, we obtain the deflection angle of light in the weak field limits
which shows that the bending of light is a global and topological effect. Afterwards, we demonstrate the
effect of a plasma medium on the deflection of light by a regular black hole with cosmic strings. We discuss
that increasing cosmic string parameter y and mass M, will increase the bending angle.
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I. INTRODUCTION

Black hole physics preserve the mystery of the present,
not only by the discovery of gravitational waves [1], but
also by the more fundamental level of black hole physics,
such as entropy and the information paradox [2]. Moreover,
in spite of all deep studies on black hole physics, the
singularity area of the black hole, where strong curvature
effects occur, is unknown and is an open issue in physics
until we discover a theory of quantum gravity [3]. On the
other hand, many different models of black holes are
obtained to solve the singularity problem. These non-
singular solutions of the black hole, called regular black
holes, attracted strong attention in recent years, especially
the model with nonlinear electrodynamics coupled to
Einstein’s theory of gravity. First, Bardeen suggested that
regular black holes with magnetic charges obey the weak
energy condition [4]. Many various works of Bardeen-like
black holes are done using the nonlinear electrodynamics to
remove singularities [5—17]. Thus, it is important to check
their observational signatures [18].

Gravitational lensing is a helpful technique to understand
galaxies, dark matter, dark energy, and the universe [19].
Since the first gravitational lensing observation by
Eddington, a lot of works on gravitational lensing have
been written for black holes, wormholes, cosmic strings
and other objects [20-35]. In 2008, Gibbons and Werner
showed a different way to obtain the deflection angle of
light from nonrotating asymptotically flat spacetimes [36],
then Werner extended this study to stationary spacetimes

spacetime, where the source and receiver are located at
asymptotic regions. Then Ishihara et al. extended this
method for finite-distances (large impact parameter cases)
[38]. Recently, Crisnejo and Gallo have shown that plasma
medium deflects photons [39]. For more recent works, one
can see [40-60].

The purpose of this work is to study the deflection angle
by regular black holes in a topological defect background,
given by the cosmic string spacetime [16] using the Gauss-
Bonnet theorem to look at the influence of topological
defects [61] on gravitational lensing. For comparison, we
consider the notion of the deflection angle of massive
particles, or the deflection of photons, in a plasma medium
from a regular black hole with cosmic strings (RBCS). Our
main aim is to demonstrate possible effects of cosmic
strings and nonlinear electrodynamics on the deflec-
tion angle.

This paper is composed as follows: in Sec. II, we briefly
review RBCS. In Sec. III, we calculate the deflection angle
by RBCS using the Gauss-Bonnet theorem in weak field
regions. Then in Sec. IV, we extend our studies for the
deflection of light by RBCS in a plasma medium. We recap
our findings in Sec. V.

II. REGULAR BLACK HOLES WITH
COSMIC STRINGS

The RBCS metric in spherical coordinates is given by the
equations [17]

[37]. Their method was based on the Gauss-Bonnet dr?

theorem and the optical geometry of the black hole’s ds®> = —f(r)dt* —I—m+ r2(d6? + sin?0dg?), (1)
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with the cosmic string parameter { = 1-4u. It is noted that
the mass function [16] is given by

m(r) = —— 5, 3)

where M|, and r, are mass and length, respectively. The
above metric reduces as follows for Bardeen black holes
(p = 3, g = 2) and Hayward black holes (p = g = 3) [6].
There are two solutions for ry, < M\, where r = r. Note
that the inner horizon is r_ and the outer horizon
is r. ~2m(r).

III. CALCULATION OF DEFLECTION ANGLE
BY RBCS OPTICAL SPACETIME

The RBCS optical spacetime can be simply written in
equatorial plane @ = /2, to obtain null geodesics (ds> = 0):

B dr2 +C2r2d(p2
S )

To use Gauss-Bonnet theorem, first, one should obtain the
Gaussian curvature K-an intrinsic property of optical space-
time. The optical geometry is in two dimensions and is
calculated for the RBCS as follows [36]:

- (4)

K — RicciZScalar ~— 21‘?0 + 3]‘4402 ] (5)
r r

(i) The Gaussian curvature of the optical RBCS space-
time is negative so that, locally, all the light rays
diverge.

(i) There is no contribution from cosmic strings.

(iii) To find multiple images (after converging), one
should use theory, such as the Gauss-Bonnet theo-
rem, to connect to local features of spacetime, such
as Gaussian curvature.

A. The Gauss-Bonnet theorem

The Gauss-Bonnet theorem is defined for the region Dy
in M, with boundary 0Dy = y; U Cy [36]

// Kds + ]{ kdt = 22y(Dg) — (0 + 05) = 7. (6)

Dg 0Dy
//KdS + %Kdl =7 (7)
Dg ODg

Note that the geodesics curvature is given by «. For the case
of R going to infinity, both jump angles are taken as 7/2,

(shortly 8, 4+ 05 — =). Since Dy, is nonsingular, the Euler
characteristic is y(Dg) =1 and x(y;) = 0. For the near
asymptotic limit of R, Cg := r(@) = R = const, the radial
component of the geodesic curvature is found by:

. a1
k(Cr) = V¢, Crl = (3,-CrCr)* — I (8)

and then

K(Cr)dt = 7 (CR)dp. (9)

Note that it is not flat because of the cosmic strings at
asymptotic limits. The Gauss-Bonnet equation reduces to:

n:[ZdengﬂZd(p. (10)

where a is a deflection angle and the optical surface area of
RBCS is dS = {rdrde.

B. Deflection angle in weak field limits

In the weak field regions, the light ray follows a straight
line approximation, so that we can use the condition of
r = b/ sin ¢ at zeroth-order. After we calculate the optical
geometry (5) and use the Gauss-Bonnet theorem (10), the
deflection angle is found as follows:

a—ﬂ_(:ﬂg—//Krdrdqo. (11)
0 b

sing

The deflection angle o of RBCS in weak field limits is
found as follows:

AM
a:70+47z/4. (12)

Note that the cosmic string parameter u, and the mass
term increase the deflection angle.

IV. WEAK GRAVITATIONAL LENSING
BY RBCS IN A PLASMA MEDIUM

In this section, we investigate the effect of a plasma
medium on the weak gravitational lensing by RBCS.
The refractive index n(r) for RBCS is obtained as [39],

n(r) = \/1 —%O —2mr(r)), (13)

where the mass function [16] is given in (3), w, is the
electron plasma frequency and o, is the photon frequency
measured by an observer at infinity. Then the correspond-
ing optical metric is
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n?(r)

f(r)

do* = gif'dx'dxl =

(Jfl(—r;) + cerdqﬂ) . (14)

The Gaussian curvature for the above optical metric is
calculated as follows:

KdS = —

((2r =3My)ws* = 3w, (r + My)we? + raw,*)

M02 (a)ez + a)ooz)a)oo4

]C = - 3
(a)ez wc:oz)zr3 (a)ez - ww2)3r4
(15)
W only consider KCdS at first order in m:
M
Mo 1y + O(MD). (16)

(_we2 + wm2)5/2r3

On the other hand, we have

d 2R2\ 1/2
Y- (m) (17)
do Cr (R)
thus, we show that it goes to {:
. do
I;I_I)I'OIOKH%CR —c (18)

For the limit of R — oo, and using the straight light
approximation r = b/ sin¢g, the Gauss-Bonnet theorem
becomes [39]:

lim T+a do
K —
R—o0 0 9 d(p

n R
dp =n— lim/ / Kds. (19)
R—oo [ b

CR sing

Hence, the deflection angle with the approximate expres-
sion for the weak field limits reads as:

aM,  Myw,>
=4 — 44 .
a U+ b + w2b

(20)

These results show that the photon rays move in a medium
of homogeneous plasma. It is noted that w,/ws, — 0, (20)

[

reduces to (12), and the effect of the plasma can be
removed.

V. CONCLUSION

In this paper, we performed a comprehensive study of
RBCS’s deflection angle of photons in weak field approxi-
mation. To this end, we have used the Gauss-Bonnet
theorem and a straight line approximation to obtain the
deflection angle of light at leading order terms. Then, we
calculated the deflection angle of light by RBCS in a
plasma medium up to the first order with the approximate
expression for the weak deflection. For both cases, the
cosmic string parameter y and the mass term M, increase
the deflection angle. After neglecting the plasma effects,
w,/ws — 0, (20) reduces to (12). The deflection angle
using the Gauss-Bonnet theorem is calculated by integrat-
ing over a domain outside the impact parameter, which
shows that gravitational lensing is a global effect and
is a powerful tool to research the nature of black hole
singularities.
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