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We study the 𝑃-V criticality of a specific charged AdS type black hole (SBH) in 𝑓(𝑅) gravity coupled with Yang-Mills field.
In the extended phase space, we treat the cosmological constant as a thermodynamic pressure. After we study the various
thermodynamical quantities, we show that the thermodynamic properties of the SBH behave as a Van der Waals liquid-gas system
at the critical points and there is a first-order phase transition between small-large SBH.

1. Introduction

Important contribution on black holes’ thermodynamics in
anti-de-Sitter (AdS) spacetime is made by Hawking and Page
[1], where a first-order phase transition is discovered between
the Schwarzschild-anti-de-Sitter (SAdS) black holes that is
known as the Hawking-Page transition. Then Chamblin et
al. and Cvetic et al. show that the first-order phase transition
among Reissner Nordstrom (RN) AdS black holes and the
similarities between charged AdS black holes and liquid-gas
systems in grand canonical ensemble [2–4]. Moreover, in the
seminal papers of Kubiznak and Mann [5], the cosmological
constant Λ is used as dynamical pressure [6]

𝑃 = − Λ
8𝜋 = 3

8𝜋𝑙2 (1)

for the RN-AdS black holes in the extended phase space,
instead of treating the Λ as a fixed parameter (in standard
thermodynamic), and its conjugate variable has dimension of
volume

𝑉 = (𝜕𝑀
𝜕𝑃 )
𝑆,𝑄

. (2)

Calculating the critical components and finding the phase
transition of the RN-AdS black holes, it is shown that RN-AdS

black holes behave similar to the Van der Waals fluid in the
extended phase space where a first-order small/large black
hole’s phase transition occurs at a critical temperature below
[7–11]. The Van der Waals equation,

(𝑃 + 𝑎
V2

) (V − 𝑏) = 𝑘𝑇, (3)

where its pressure is 𝑃, its temperature is 𝑇, its specific
volume is V = 𝑉/𝑁, the Boltzmann constant is 𝑘, and
the positive constants are 𝑎 and 𝑏, takes into account the
attractive and repulsive forces between molecules and gives
an improved model for ideal gas behaviour to describe the
basic properties of the liquid-gas phase transition with the
ratio of 𝑃𝑐𝑉𝑐/𝑇𝑐 = 3/8 at critical points [12–17]. Afterwards,
applications of the thermodynamical law’s to the black hole’s
physics have gain attention. Different researches are done by
using the variation of the first law of thermodynamics of black
holes and also application of the 𝑃-V criticality on black holes
[18–88]. Furthermore, AdS-CFT correspondence is the other
reason for studying the AdS black hole.

In this paper we use a black hole’s solution in the Yang-
Mills field which is the one of themost interesting nonabelian
gauge theories. By using the string theory models they find
the Yang-Mills fields equations in low energy limit and then
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Yasskin found the first black hole solution in the theory of
Yang-Mills coupled to Einstein theory [89].

Our main aim is to check 𝑃-𝑉 criticality of a specific
charged AdS type black hole (SBH) in 𝑓(𝑅) gravity coupled
with Yang-Mills field (YMF) [90] by comparing its result
with the Van der Waals system. The Yang-Mills field is
acted inside the nuclei with short range and 𝑓(𝑅) gravity
which is an extension of Einstein’s General Relativity with the
arbitrary function of Ricci scalar 𝑓(𝑅) [91–94]. It would be
of interest to study the 𝑃-V criticality of SBH in 𝑓(𝑅) gravity
coupled with YMF in the extended phase space treating the
cosmological constant as a thermodynamic pressure. In this
paper, we first study the thermodynamics in the extended
phase space and then we obtain its critical exponents to show
the existence of the Van der Waals like small-large black hole
phase transitions.

The paper is organized as follows: in Section 2 we will
briefly review the SBH in 𝑓(𝑅) gravity coupled with YMF. In
Section 3 𝑃-V criticality of the SBH in 𝑓(𝑅) gravity coupled
with YMF will be studied in the extended phase space by
calculating its critical exponents. In Section 4 we conclude
with final remarks.

2. SBH in 𝑓(𝑅) Gravity Coupled with YMF

In this section, we briefly present a solution of SBH in 𝑓(𝑅)
gravity coupled with YMF with a cosmological constant in
𝑑-dimensions [90].Then we discuss its temperature, entropy,
and other thermodynamic quantities. The action of the 𝑓(𝑅)
gravity minimally coupled with YMF (𝑐 = 𝐺 = 1) is [90]

𝑆 = ∫𝑑𝑑𝑥√−𝑔[𝑓 (𝑅)
16𝜋 + L (𝐹)] , (4)

where 𝑓(𝑅) is a function of the Ricci scalar 𝑅 and L(𝐹)
stands for the Lagrangian of the nonlinear YMF with 𝐹 =
(1/4)tr(𝐹(𝑎)𝜇] 𝐹(𝑎)𝜇]), where the 2-form components of the YMF
areF(𝑎) = (1/2)𝐹(𝑎)𝜇] 𝑑𝑥𝜇∧𝑑𝑥]. Here is the internal index (𝑎) for
the degrees of freedomof the nonabelian YMF. It is noted that
this nonlinear YMF can reduce to linear YM field (L(𝐹) =
−(1/4𝜋)𝐹𝑠) for 𝑠 = 1 and 𝑓𝑅 = 𝑑𝑓(𝑅)/𝑑𝑅 = 𝜂𝑟 which 𝜂 is
an integration constant. Solving Einstein field equations for
the 𝑓(𝑅) gravity coupled with YMF gives to the spherically
symmetric black hole metrics (see equation (36) in [90])

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑑𝑟2
𝑓 (𝑟)

+ 𝑟2 (𝑑𝜃21 + Σ𝑑−2𝑖=2 Π𝑖−1𝑗=1sin2𝜃𝑗𝑑𝜃2𝑖 )
(5)

with 0 ≤ 𝜃𝑑−2 ≤ 2𝜋, 0 ≤ 𝜃𝑖 ≤ 𝜋, 1 ≤ 𝑖 ≤ 𝑑 − 3, in which the
metric function 𝑓(𝑟) is

𝑓 (𝑟)
= 𝑑 − 3

𝑑 − 2 − Λ𝑟2 − 𝑚
𝑟𝑑−2

− (𝑑 − 1) (𝑑 − 2)(𝑑−1)/2 (𝑑 − 3)(𝑑−1)/4
2(𝑑−5)/2𝜂𝑑

𝑄(𝑑−1)/2 ln 𝑟
𝑟𝑑−2 .

(6)

Note that Λ = −1/𝑙2, 𝑀 is the mass of the black hole,
and 𝜂 is a constant. Furthermore for the limit of 𝑄7/2 →
0, it becomes well-known solutions in 𝑓(𝑅) gravity. The
Bekenstein-Hawking temperature [95–98] of the black hole
is calculated by 𝑇 = (1/4𝜋)(𝜕𝑓(𝑟)/𝑑𝑟)|𝑟=𝑟ℎ

𝑇 = (−1 + (𝑑 − 2) ln (𝑟)) 𝑄𝑑/2−1/2 (𝑑 − 1) (𝑑 − 2)𝑑/2−1/2 (𝑑 − 3)𝑑/4−1/4 + 𝑑2𝑑/2−5/2 (−2𝑟2Λ𝑟𝑑−2 + 𝑚 (𝑑 − 2)) 𝜂
4𝜋𝑟𝑑−2𝜂𝑑2𝑑/2−5/2𝑟 , (7)

where 𝑟ℎ is the horizon of the black hole, and solving the
equation 𝑓(𝑟ℎ) = 0, the total mass of the black hole is
obtained as

𝑚

= −4𝑄𝑑/2−1/2 (𝑑/2 − 1)𝑑/2 ln (𝑟)√2 (𝑑 − 1) (𝑑 − 2) (𝑑 − 3)𝑑/4−1/4 + (((𝑓 − 1) 𝑑 − 2𝑓 + 3) 𝑟𝑑−2 + 𝑟𝑑Λ (𝑑 − 2)) 𝑑√𝑑 − 2𝜂
𝜂𝑑 (𝑑 − 2)3/2 . (8)

The entropy of the black hole can be derived as

𝑆 = 𝐴ℎ
4 𝜂𝑟ℎ, (9)

where𝐴ℎ = ((𝑑−1)/Γ((𝑑+1)/2))𝜋(𝑑−1)/2𝑟𝑑−2ℎ is the area of the
black hole’s event horizon.Then, in the extended phase space,
we calculate the pressure in terms of cosmological constant

𝑃 = − Λ
8𝜋 (10)

and its thermodynamic volume is

𝑉 = Ω𝑑−2𝑟𝑑−1ℎ 𝜂
𝑛 − 1 , (11)
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where Ω𝑑−2 is the volume of the unit sphere. Now the mass
can be also written in terms of 𝑃 as follows:

𝑚

= −4𝑄𝑑/2−1/2 (𝑑/2 − 1)𝑑/2 ln (𝑟)√2 (𝑑 − 1) (𝑑 − 2) (𝑑 − 3)𝑑/4−1/4 + (((𝑓 − 1) 𝑑 − 2𝑓 + 3) 𝑟𝑑−2 − 8𝑟𝑑𝑃𝜋 (𝑑 − 2)) 𝑑√𝑑 − 2𝜂
(𝑑 − 2)3/2 𝜂𝑑 . (12)

The first law of the black hole thermodynamics in the
extended phase space is

𝑑𝑚 = 𝑇𝑑𝑆 + Φ𝑑𝑄 + 𝑉𝑑𝑃, (13)

where the thermodynamic variables can be obtained as 𝑇 =
(𝜕𝑚/𝜕𝑆)𝑄,𝑃, Φ = (𝜕𝑚/𝜕𝑄)𝑆,𝑃, and 𝑉 = (𝜕𝑚/𝜕𝑃)𝑆,𝑄.

Thenwewrite the generalized Smarr relation for the black
hole, which can be derived also using the dimensional scaling,
as

𝑚 = 2𝑇𝑆 + Φ𝑄 − 2𝑉𝑃. (14)

We introduce the cosmological constant as thermody-
namic pressure in the extended phase space in (10), and it is
seen that the first law of the black hole’s thermodynamics and
the Smarr relations is matched well.

3. 𝑃-V Criticality
In this section, we investigate the critical behaviour of the
SBH in the extended phase space. The critical point can be
defined as

𝜕𝑃
𝜕V = 𝜕2𝑃

𝜕V2 = 0. (15)

Now we consider the case of four dimensions (𝑑 = 4), where
the metric function becomes

𝑓 = 1
2 − 𝑚

𝑟2 − 𝑟2Λ − 3𝑄3/2 ln (𝑟)
𝑟2𝜂 (16)

and corresponding mass of the black hole is calculated as

𝑚 = 𝑟2
2 − 𝑟2Λ − 3𝑄3/2 ln (𝑟)

𝜂 . (17)

The temperature of the four dimensional SBH is

𝑇 = −3𝑄3/2 − 𝑟2𝜂 + 4𝑟4𝜂Λ
4𝜋𝑟3𝜂 . (18)

Thenwewrite the temperature in terms of𝑃 (𝑃 = −Λ/8𝜋)
as follows:

𝑇 = 8𝑟𝑃 − 3𝑄3/2
4𝑟3𝜂𝜋 + 1

4𝑟𝜋 . (19)

Afterwards one can easily obtain the pressure 𝑃 in terms of
the temperature 𝑇:

𝑃 = 𝑇
8𝑟 + 3𝑄3/2

32𝑟4𝜂𝜋 − 1
32𝑟2𝜋. (20)

To consider the 𝑃-V criticality using the extended phase
space, we write the black hole radius in terms of the specific
volume V as 𝑟ℎ = (𝑑 − 2)V/4. Using the condition of (15),
we derive the critical Bekenstein-Hawking temperature 𝑇𝑐,
critical pressure 𝑃𝑐, and critical specific volume V𝑐 as follows:

𝑇𝑐 = −24 𝑄3/2
V3𝜂𝜋 + 1

V𝜋,

V𝑐 = 24√2√𝑄3/2
√𝜂 ,

𝑃𝑐 = 𝜂
1152𝑄3/2𝜋.

(21)

One can also find this relation which is same with a Van
der Waals fluid

𝜌𝑐 = 𝑃𝑐V𝑐
𝑇𝑐 = 3

8 . (22)

It is noted that Figures 1 and 2 show that 𝑃-𝑟 diagram is
the same with the diagram of the Van der Waals liquid-gas
system.

Let us now analyze the Gibbs free energy of the system.
We first use the mass as enthalpy instead of internal energy
and the Gibbs free energy in the extended phase space for
the SBH in 𝑓(𝑅) gravity coupled with Yang-Mills field is
calculated as

𝐺 = 𝑚 − 𝑇𝑆

= 6𝑄3/2 + 𝑟2𝜂 − 16𝑃𝜋𝑟4𝜂 − 18𝑄3/2 ln (𝑟)
6𝜂 . (23)

We plot the change of the free energy𝐺with𝑇 in Figure 3.
There is a small-large black hole phase transition as seen in
Figure 3.

4. Conclusion

In this paper, we first treat the cosmological constant Λ
as a thermodynamical pressure 𝑃 and the thermodynamics
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Figure 1: 𝑃-𝑟 diagram of a SBH in a 𝑓(𝑅) gravity coupled with YMF
for 𝑄 = 0.1 and 𝜂 = 1.
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Figure 2:𝑃-𝑇 diagramof a SBH in a𝑓(𝑅) gravity coupledwith YMF
for 𝑄 = 0.1 and 𝜂 = 1.

and 𝑃-V criticality of the SBH in 𝑓(𝑅) gravity coupled with
YMF is studied in the extended phase space. It is shown
that there is a phase transition between small-large black
holes. Furthermore, after we obtain the critical exponents,
the critical behaviour of SBH in 𝑓(𝑅) gravity coupled with
YMF in the extended space behaves also similarly as Van der
Waals liquid-gas systems with the ratio of 𝑃𝑐V𝑐/𝑇𝑐 = 3/8
at critical points. Hence it would be of great importance to
obtain the 𝑃-𝑉 criticality of SBH in 𝑓(𝑅) gravity coupled
with YMF. Hence the critical ratio 𝑃𝑐V𝑐/𝑇𝑐 = 3/8 is universal
and independent from the modified gravities.The YMF has a
parameter of 𝜂 but has no effect on the universal ratio of 3/8.

It is also interesting to study the holographic duality of
SBH in 𝑓(𝑅) gravity coupled with YMF. It is noted that
without thermal fluctuations black hole is holographic dual
with Van der Waals fluid given by (𝑃 + 𝑎/𝑉2)(𝑉 − 𝑏) = 𝑇,
where 𝑘 is the Boltzmann constant [84, 85], 𝑏 > 0 is nonzero

P = Pc
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Figure 3:𝐺-𝑇 diagramof a SBH in a𝑓(𝑅) gravity coupledwith YMF
for different values of 𝑃 (𝑃 < 𝑃𝑐, 𝑃 = 𝑃𝑐, and 𝑃 > 𝑃𝑐) with 𝑄 = 0.1
and 𝜂 = 1.

constant which is the size of the molecules of fluid, and the
constant 𝑎 > 0 is a value of the interaction measurement
between molecules. We leave this problem for the future
projects.
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[80] L. Aránguiz, X.-M. Kuang, and O.Miskovic, “Topological black
holes in pure Gauss-Bonnet gravity and phase transitions,”
Physical Review D: Particles, Fields, Gravitation and Cosmology,
vol. 93, no. 6, Article ID 064039, 2016.

[81] D. Kastor, S. Ray, and J. Traschen, “Enthalpy and the mechanics
of AdS black holes,” Classical and Quantum Gravity, vol. 26, no.
19, Article ID 195011, 2009.

[82] M. Azreg-Aı̈nou, “Black hole thermodynamics: no inconsis-
tency via the inclusion of the missing P-V terms,” Physical
Review D: Particles, Fields, Gravitation and Cosmology, vol. 91,
no. 6, Article ID 064049, 2015.

[83] M. Azreg-Aı̈nou, “Charged de Sitter-like black holes: quint-
essence-dependent enthalpy and new extreme solutions,” The
European Physical Journal C, vol. 75, no. 1, pp. 1–13, 2015.

[84] E. Caceres, P. H. Nguyen, and J. F. Pedraza, “Holographic
entanglement entropy and the extended phase structure of STU
black holes,” Journal of High Energy Physics, vol. 2015, no. 9,
article no. 184, 2015.

[85] C. V. Johnson, “Holographic heat engines,” Classical and Quan-
tum Gravity, vol. 31, no. 20, p. 205002, 2014.

[86] M. Momennia, “Reentrant phase transition of Born-Infeld-
dilaton black holes,” https://arxiv.org/abs/1709.09039.

[87] S. H. Hendi and M. Momennia, “AdS charged black holes in
Einstein–Yang–Mills gravity’s rainbow:Thermal stability and P
− V criticality,” Physics Letters B, vol. 777, pp. 222–234, 2018.

[88] S. H. Hendi, B. Eslam Panah, S. Panahiyan, and M. Momennia,
“Three dimensional magnetic solutions in massive gravity with
(non)linear field,” Physics Letters. B. Particle Physics, Nuclear
Physics and Cosmology, vol. 775, pp. 251–261, 2017.

[89] P. B. Yasskin, “Solutions for gravity coupled to massless gauge
fields,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 12, no. 8, pp. 2212–2217, 1975.

[90] S. H.Mazharimousavi andM.Halilsoy, “ Black hole solutions in
,” Physical Review D: Particles, Fields, Gravitation and Cosmol-
ogy, vol. 84, no. 6, 2011.

[91] S. Chakraborty and S. SenGupta, “Spherically symmetric brane
spacetimewith bulk f (R) gravity,”TheEuropeanPhysical Journal
C, vol. 75, no. 1, article no. 11, 2015.

[92] S. Nojiri and S. D. Odintsov, “Anti-evaporation of Schwarz-
schild-de Sitter black holes in F(R) gravity,” Classical and
Quantum Gravity, vol. 30, no. 12, Article ID 125003, 2013.

[93] S. Nojiri and S. D. Odintsov, “Instabilities and anti-evaporation
of Reissner–Nordström black holes in modified F(R) gravity,”
Physics Letters B, vol. 735, pp. 376–382, 2014.

[94] S. Nojiri and S. Odintsov, “Regular multihorizon black holes
in modified gravity with nonlinear electrodynamics,” Physical
Review D: Particles, Fields, Gravitation and Cosmology, vol. 96,
no. 10, 2017.
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